Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Oecologia ; 203(1-2): 53-62, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37787826

RESUMO

Pollen morphology varies at inter- and intraspecific levels. Its interaction with pollinator behavior and morphology determines the probability of successful pollination. We tested whether pollen morphology promoting successful pollination differs depending on pollinator taxa in a generalist shrub, Weigela hortensis (Caprifoliaceae). We identified flower visitors carrying pollen from anthers to stigmas and compared the spine length and diameter of the pollen grains they carried. We found that pollen on the bodies of bumble bees and hunch-back flies and the scopae of small bees (including andrenid bees) contributed to seed production. Pollen grains on the bodies of bumble bees had longer spines than those on the scopae of andrenid bees or the bodies of hunch-back flies. Pollen grains on the bodies of bumble bees and the scopae of andrenid bees had larger diameters than those on hunch-back flies. Bumble bees collected pollen grains with shorter spines and larger diameters on their corbiculae while andrenid bees collected pollen grains with shorter spines and intermediate diameters on their scopae. The differences in morphology of pollen carried by pollinators reflected the tendency of bees to collect pollen with specific morphology into corbiculae/scopae. Our findings suggest that pollen morphology has diversified to facilitate successful pollination by pollinating partners.


Assuntos
Pólen , Polinização , Abelhas , Animais , Comportamento Alimentar , Sementes , Flores
2.
J Theor Biol ; 524: 110731, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-33915145

RESUMO

A plant can sire more seeds by increasing the number of pollen recipient flowers or the amount of pollen deposited on recipient flowers. We theoretically analyzed how pollen stickiness contributes to paternal fitness through changing the pattern of pollen dispersal including both the number of recipient flowers and overall pollen deposition (the overall amount of pollen deposited on recipient flowers) in animal-pollinated plants. We developed a numerical model in which pollen stickiness to pollinators increases with production of expensive materials on pollen surfaces, and a high level of stickiness diminishes the proportions of pollen lost from a pollinator body during a flight and pollen deposited on a stigma during a visit. We found that the number of recipient flowers monotonically increased with increasing pollen stickiness allocation while overall pollen deposition was maximized at a certain amount of stickiness allocation. We demonstrated that evolutionarily stable pollen stickiness attained many recipient flowers at the expense of overall pollen deposition in most cases while it merely favored maximization of overall pollen deposition in all other cases. Sticky pollen evolved if pollinators were highly likely to drop pollen during flights and did not diffuse well. In this situation, the evolutionarily stable pattern of pollen dispersal was acquisition of many pollen recipient flowers rather than maximization of overall pollen deposition. Sticky pollen also evolved if additional sticking elements were moderately effective in increasing the force of adhesion to pollinators. Pollen stickiness has a significant effect on the pattern of pollen dispersal via the extent of pollen carryover, and our results suggest that plants maximize paternal fitness by giving pollen the optimal stickiness, which varies with pollinating partners.


Assuntos
Flores , Polinização , Animais , Pólen
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA