Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Cereb Cortex ; 32(9): 1840-1865, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-34530440

RESUMO

Synapses "govern" the computational properties of any given network in the brain. However, their detailed quantitative morphology is still rather unknown, particularly in humans. Quantitative 3D-models of synaptic boutons (SBs) in layer (L)6a and L6b of the temporal lobe neocortex (TLN) were generated from biopsy samples after epilepsy surgery using fine-scale transmission electron microscopy, 3D-volume reconstructions and electron microscopic tomography. Beside the overall geometry of SBs, the size of active zones (AZs) and that of the three pools of synaptic vesicles (SVs) were quantified. SBs in L6 of the TLN were middle-sized (~5 µm2), the majority contained only a single but comparatively large AZ (~0.20 µm2). SBs had a total pool of ~1100 SVs with comparatively large readily releasable (RRP, ~10 SVs L6a), (RRP, ~15 SVs L6b), recycling (RP, ~150 SVs), and resting (~900 SVs) pools. All pools showed a remarkably large variability suggesting a strong modulation of short-term synaptic plasticity. In conclusion, L6 SBs are highly reliable in synaptic transmission within the L6 network in the TLN and may act as "amplifiers," "integrators" but also as "discriminators" for columnar specific, long-range extracortical and cortico-thalamic signals from the sensory periphery.


Assuntos
Neocórtex , Terminações Pré-Sinápticas , Adulto , Humanos , Neocórtex/ultraestrutura , Terminações Pré-Sinápticas/ultraestrutura , Sinapses/ultraestrutura , Transmissão Sináptica , Vesículas Sinápticas/ultraestrutura , Lobo Temporal/ultraestrutura
2.
Alzheimers Dement ; 19(12): 5563-5572, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37260026

RESUMO

INTRODUCTION: Naturally occurring autoantibodies (nAbs) against the pathologic isoform of amyloid beta (Aß42 ) were found in body fluids and indicate a systemic B cell response that may prevent Alzheimer's disease (AD) onset. N-glycans attached to immunoglobulin G-Fab/Fc fragments are features that influence their mechanism of action. The aim was to study the role of N-glycans in nAbs-Aß42 . METHODS: nAbs-Aß42 were isolated from AD patients and age-/sex-matched controls (n = 40) and immunoglobulin preparations. Glycosylated/deglycosylated nAbs-Aß42 were analyzed for their effect on Aß42 's aggregation, toxicity, and phagocytosis. Glycan structure was analyzed using matrix assisted laser desorption ionization time of flight mass spectrometry. RESULTS: Deglycosylation of nAbs-Aß42 had a major impact on Aß42 's aggregation/toxicity/phagocytosis. The glycan structure showed considerable differences between AD and controls. We were able to predict disease status with a sensitivity/specificity of 95% (confidence interval [CI]: 76.4-99.7%)/100% (CI: 83.9-100%). DISCUSSION: N-glycosylation has been identified as a critical attribute maintaining the beneficial effects of autoreactive Aß antibodies. These data have consequences for the development of monocloncal Aß antibodies and may open new avenues for diagnostics.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides , Glicosilação , Autoanticorpos , Biomarcadores , Polissacarídeos , Fragmentos de Peptídeos
3.
Basic Res Cardiol ; 117(1): 43, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36038749

RESUMO

Antidepressants have been reported to enhance stroke recovery independent of the presence of depressive symptoms. They have recently been proposed to exert their mood-stabilizing actions by inhibition of acid sphingomyelinase (ASM), which catalyzes the hydrolysis of sphingomyelin to ceramide. Their restorative action post-ischemia/reperfusion (I/R) still had to be defined. Mice subjected to middle cerebral artery occlusion or cerebral microvascular endothelial cells exposed to oxygen-glucose deprivation were treated with vehicle or with the chemically and pharmacologically distinct antidepressants amitriptyline, fluoxetine or desipramine. Brain ASM activity significantly increased post-I/R, in line with elevated ceramide levels in microvessels. ASM inhibition by amitriptyline reduced ceramide levels, and increased microvascular length and branching point density in wildtype, but not sphingomyelinase phosphodiesterase-1 ([Smpd1]-/-) (i.e., ASM-deficient) mice, as assessed by 3D light sheet microscopy. In cell culture, amitriptyline, fluoxetine, and desipramine increased endothelial tube formation, migration, VEGFR2 abundance and VEGF release. This effect was abolished by Smpd1 knockdown. Mechanistically, the promotion of angiogenesis by ASM inhibitors was mediated by small extracellular vesicles (sEVs) released from endothelial cells, which exhibited enhanced uptake in target cells. Proteomic analysis of sEVs revealed that ASM deactivation differentially regulated proteins implicated in protein export, focal adhesion, and extracellular matrix interaction. In vivo, the increased angiogenesis was accompanied by a profound brain remodeling response with increased blood-brain barrier integrity, reduced leukocyte infiltrates and increased neuronal survival. Antidepressive drugs potently boost angiogenesis in an ASM-dependent way. The release of sEVs by ASM inhibitors disclosed an elegant target, via which brain remodeling post-I/R can be amplified.


Assuntos
Amitriptilina , Vesículas Extracelulares , Amitriptilina/metabolismo , Amitriptilina/farmacologia , Animais , Antidepressivos/metabolismo , Antidepressivos/farmacologia , Encéfalo/metabolismo , Ceramidas/metabolismo , Ceramidas/farmacologia , Desipramina/metabolismo , Desipramina/farmacologia , Células Endoteliais/metabolismo , Vesículas Extracelulares/metabolismo , Fluoxetina/metabolismo , Fluoxetina/farmacologia , Isquemia/metabolismo , Camundongos , Proteômica
4.
Cell Microbiol ; 23(3): e13301, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33331054

RESUMO

Fungal spores are unique cells that mediate dispersal and survival in the environment. For pathogenic fungi encountering a susceptible host, these specialised structures may serve as infectious particles. The main causative agent of the opportunistic disease aspergillosis, Aspergillus fumigatus, produces asexual spores, the conidia, that become dissipated by air flows or water currents but also serve as propagules to infect a susceptible host. We demonstrate that the defX gene of this mould encodes putative antimicrobial peptides resembling cysteine-stabilised (CS)αß defensins that are expressed in a specific spatial and temporal manner in the course of asexual spore formation. Localisation studies on strains expressing a fluorescent proxy or tagged defX alleles expose that these antimicrobial peptides are secreted to coat the conidial surface. Deletion mutants reveal that the spore-associated defX gene products delay the growth of Gram-positive Staphylococcus aureus and demonstrate that the defX gene and presumably its encoded spore-associated defensins confer a growth advantage to the fungal opponent over bacterial competitors. These findings have implications with respect to the ecological niche of A. fumigatus that serves as a 'virulence school' for this human pathogenic mould; further relevance is given for the infectious process resulting in aspergillosis, considering competition with the host microbiome or co-infecting microorganisms to break colonisation resistance at host surfaces.


Assuntos
Aspergillus fumigatus/patogenicidade , Defensinas/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Aspergilose/microbiologia , Aspergillus fumigatus/genética , Aspergillus fumigatus/fisiologia , Defensinas/genética , Escherichia coli/crescimento & desenvolvimento , Proteínas Fúngicas/genética , Genes Fúngicos , Humanos , Proteínas Citotóxicas Formadoras de Poros/genética , Esporos Fúngicos/metabolismo , Esporos Fúngicos/fisiologia , Staphylococcus aureus/crescimento & desenvolvimento , Virulência
5.
BMC Infect Dis ; 22(1): 921, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36494632

RESUMO

BACKGROUND: Mycobacterium (M.) chimaera is a non-tuberculous mycobacterium (NTM) that belongs to M. avium complex (MAC). In patients with cystic fibrosis (CF), MAC can cause bronchopulmonary infections that can be prolonged and difficult to treat. MAC infections of sites other than the lungs or central catheters are rare and almost exclusively associated with immunodeficiency. CASE PRESENTATION: We present a case of an 8-year-old CF patient (delF508 homozygous) with recurrent pulmonary exacerbations, gradual clinical deterioration, B-symptoms (fever, fatigue, weight loss, night sweat), elevated transaminases and intermittent detection of M. chimaera in the sputum without radiological signs of NTM-associated lung disease with a central venous port-catheter. Next-generation sequencing (NGS) revealed M. chimaera port infection that was also confirmed by mycobacterial culture. The patient recovered within 4 weeks after removal of the catheter and initiation of MAC targeted antimicrobial therapy. Electron microscopy of the catheter illustrated the presence of mycobacteria in a biofilm. CONCLUSIONS: MAC central venous catheter infection needs to be considered in immunocompetent people. NGS is a valuable tool for rapid identification of rare infections. MAC capability of biofilm formation renders catheter removal the central therapeutic intervention for the clearance of the infection.


Assuntos
Cateteres Venosos Centrais , Fibrose Cística , Infecções por Mycobacterium não Tuberculosas , Infecção por Mycobacterium avium-intracellulare , Mycobacterium , Humanos , Criança , Complexo Mycobacterium avium/genética , Fibrose Cística/complicações , Fibrose Cística/microbiologia , Infecção por Mycobacterium avium-intracellulare/diagnóstico , Infecção por Mycobacterium avium-intracellulare/microbiologia , Infecções por Mycobacterium não Tuberculosas/diagnóstico , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Infecções por Mycobacterium não Tuberculosas/microbiologia , Escarro/microbiologia , Micobactérias não Tuberculosas
6.
Proc Natl Acad Sci U S A ; 115(27): 7087-7092, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29925597

RESUMO

Airborne fungal pathogens, predominantly Aspergillus fumigatus, can cause severe respiratory tract diseases. Here we show that in environments, fungal spores can already be decorated with nanoparticles. Using representative controlled nanoparticle models, we demonstrate that various nanoparticles, but not microparticles, rapidly and stably associate with spores, without specific functionalization. Nanoparticle-spore complex formation was enhanced by small nanoparticle size rather than by material, charge, or "stealth" modifications and was concentration-dependently reduced by the formation of environmental or physiological biomolecule coronas. Assembly of nanoparticle-spore surface hybrid structures affected their pathobiology, including reduced sensitivity against defensins, uptake into phagocytes, lung cell toxicity, and TLR/cytokine-mediated inflammatory responses. Following infection of mice, nanoparticle-spore complexes were detectable in the lung and less efficiently eliminated by the pulmonary immune defense, thereby enhancing A. fumigatus infections in immunocompromised animals. Collectively, self-assembly of nanoparticle-fungal complexes affects their (patho)biological identity, which may impact human health and ecology.


Assuntos
Aspergillus fumigatus/imunologia , Citocinas/imunologia , Pulmão/imunologia , Nanopartículas , Aspergilose Pulmonar/imunologia , Esporos Fúngicos/imunologia , Células A549 , Animais , Humanos , Pulmão/patologia , Camundongos , Coroa de Proteína/imunologia , Aspergilose Pulmonar/patologia , Células THP-1
7.
Stroke ; 51(6): 1825-1834, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32312217

RESUMO

Background and Purpose- Small extracellular vesicles (sEVs) obtained from mesenchymal stromal cells (MSCs) were shown to induce neurological recovery after focal cerebral ischemia in rodents and to reverse postischemic lymphopenia in peripheral blood. Since peripheral blood cells, especially polymorphonuclear neutrophils (PMNs), contribute to ischemic brain injury, we analyzed brain leukocyte responses to sEVs and investigated the role of PMNs in sEV-induced neuroprotection. Methods- Male C57Bl6/j mice were exposed to transient intraluminal middle cerebral artery occlusion. After reperfusion, vehicle or sEVs prepared from conditioned media of MSCs raised from bone marrow samples of 3 randomly selected healthy human donors were intravenously administered. sEVs obtained from normoxic and hypoxic MSCs were applied. PMNs were depleted in vehicle and MSC-sEV-treated mice. Neurological deficits, ischemic injury, blood-brain barrier integrity, peripheral blood leukocyte responses, and brain leukocyte infiltration were evaluated over 72 hours. Results- sEV preparations of all 3 donors collected from normoxic MSCs significantly reduced neurological deficits. Preparations of 2 of these donors significantly decreased infarct volume and neuronal injury. sEV-induced neuroprotection was consistently associated with a decreased brain infiltration of leukocytes, namely of PMNs, monocytes/macrophages, and lymphocytes. sEVs obtained from hypoxic MSCs (1% O2) had similar effects on neurological deficits and ischemic injury as MSC-sEVs obtained under regular conditions (21% O2) but also reduced serum IgG extravasation-a marker of blood-brain barrier permeability. PMN depletion mimicked the effects of MSC-sEVs on neurological recovery, ischemic injury, and brain PMN, monocyte, and lymphocyte counts. Combined MSC-sEV administration and PMN depletion did not have any effects superior to PMN depletion in any of the readouts examined. Conclusions- Leukocytes and specifically PMNs contribute to MSC-sEV-induced ischemic neuroprotection. Individual MSC-sEV preparations may differ in their neuroprotective activities. Potency assays are urgently needed to identify their therapeutic efficacy before clinical application. Visual Overview- An online visual overview is available for this article.


Assuntos
Barreira Hematoencefálica , Isquemia Encefálica , Vesículas Extracelulares , Células-Tronco Mesenquimais/metabolismo , Neuroproteção , Neutrófilos/metabolismo , Animais , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Isquemia Encefálica/sangue , Isquemia Encefálica/patologia , Isquemia Encefálica/terapia , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/patologia , Vesículas Extracelulares/transplante , Humanos , Masculino , Células-Tronco Mesenquimais/patologia , Camundongos , Neutrófilos/patologia
8.
Ann Hematol ; 99(3): 459-475, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31932899

RESUMO

Acute myeloid leukemia (AML) is a heterogeneous malignant disease characterized by a collection of genetic and epigenetic changes. As a consequence, AML can evolve towards more aggressive subtypes during treatment, which require additional therapies to prevent future relapse. As we have previously detected double-stranded DNA (dsDNA) in tumor-derived extracellular vesicles (EVs), in this current study we attempted to evaluate the potential diagnostic applications of AML EV-dsDNA derived from primary bone marrow and peripheral blood plasma samples. EVs from plasma of 29 pediatric AML patients (at initial diagnosis or during treatment) were isolated by ultracentrifugation, after which dsDNA was extracted from obtained EVs and analyzed for leukemia-specific mutations using next generation sequencing (NGS) and GeneScan-based fragment-length analysis. In 18 out of 20 patients, dsDNA harvested from EVs mirrored the (leukemia-specific) mutations found in the genomic DNA obtained from primary leukemia cells. In the nanoparticle tracking analysis (NTA), a decrease in EV numbers was observed in patients after treatment compared with initial diagnosis. Following treatment, in 75 samples out of the 79, these mutations were no longer detectable in EV-dsDNA. In light of our results, we propose the use of leukemia-derived EV-dsDNA as an additional measure for mutational status and, potentially, treatment response in pediatric AML.


Assuntos
DNA de Neoplasias , Vesículas Extracelulares , Leucemia Mieloide Aguda , Mutação , Adolescente , Criança , Pré-Escolar , DNA de Neoplasias/sangue , DNA de Neoplasias/genética , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Feminino , Humanos , Lactente , Leucemia Mieloide Aguda/sangue , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Masculino
9.
Int J Mol Sci ; 21(15)2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32756507

RESUMO

Modern electron microscopy (EM) such as fine-scale transmission EM, focused ion beam scanning EM, and EM tomography have enormously improved our knowledge about the synaptic organization of the normal, developmental, and pathologically altered brain. In contrast to various animal species, comparably little is known about these structures in the human brain. Non-epileptic neocortical access tissue from epilepsy surgery was used to generate quantitative 3D models of synapses. Beside the overall geometry, the number, size, and shape of active zones and of the three functionally defined pools of synaptic vesicles representing morphological correlates for synaptic transmission and plasticity were quantified. EM tomography further allowed new insights in the morphological organization and size of the functionally defined readily releasable pool. Beside similarities, human synaptic boutons, although comparably small (approximately 5 µm), differed substantially in several structural parameters, such as the shape and size of active zones, which were on average 2 to 3-fold larger than in experimental animals. The total pool of synaptic vesicles exceeded that in experimental animals by approximately 2 to 3-fold, in particular the readily releasable and recycling pool by approximately 2 to 5-fold, although these pools seemed to be layer-specifically organized. Taken together, synaptic boutons in the human temporal lobe neocortex represent unique entities perfectly adapted to the "job" they have to fulfill in the circuitry in which they are embedded. Furthermore, the quantitative 3D models of synaptic boutons are useful to explain and even predict the functional properties of synaptic connections in the human neocortex.


Assuntos
Neocórtex/ultraestrutura , Terminações Pré-Sinápticas/ultraestrutura , Sinapses/ultraestrutura , Lobo Temporal/ultraestrutura , Animais , Tomografia com Microscopia Eletrônica , Humanos , Imageamento Tridimensional , Camundongos , Microscopia Eletrônica , Neocórtex/diagnóstico por imagem , Plasticidade Neuronal/fisiologia , Ratos , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/ultraestrutura , Lobo Temporal/diagnóstico por imagem
10.
Mol Cell Proteomics ; 16(12): 2184-2198, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28951444

RESUMO

The ubiquitous mold Aspergillus fumigatus threatens immunosuppressed patients as inducer of lethal invasive aspergillosis. A. fumigatus conidia are airborne and reach the alveoli, where they encounter alveolar epithelial cells (AEC). Previous studies reported the importance of the surfactant-producing AEC II during A. fumigatus infection via in vitro experiments using cell lines. We established a negative isolation protocol yielding untouched primary murine AEC II with a purity >90%, allowing ex vivo analyses of the cells, which encountered the mold in vivo By label-free proteome analysis of AEC II isolated from mice 24h after A. fumigatus or mock infection we quantified 2256 proteins and found 154 proteins to be significantly differentially abundant between both groups (ANOVA p value ≤ 0.01, ratio of means ≥1.5 or ≤0.67, quantified with ≥2 peptides). Most of these proteins were higher abundant in the infected condition and reflected a comprehensive activation of AEC II on interaction with A. fumigatus This was especially represented by proteins related to oxidative phosphorylation, hence energy production. However, the most strongly induced protein was the l-amino acid oxidase (LAAO) Interleukin 4 induced 1 (IL4I1) with a 42.9 fold higher abundance (ANOVA p value 2.91-10). IL4I1 has previously been found in B cells, macrophages, dendritic cells and rare neurons. Increased IL4I1 abundance in AEC II was confirmed by qPCR, Western blot and immunohistology. Furthermore, A. fumigatus infected lungs showed high levels of IL4I1 metabolic products. Importantly, higher IL4I1 abundance was also confirmed in lung tissue from human aspergilloma. Because LAAO are key enzymes for bactericidal product generation, AEC II might actively participate in pathogen defense. We provide insights into proteome changes of primary AEC II thereby opening new avenues to analyze the molecular changes of this central lung cell on infectious threats. Data are available via ProteomeXchange with identifier PXD005834.


Assuntos
Aspergillus fumigatus/patogenicidade , Flavoproteínas/metabolismo , L-Aminoácido Oxidase/metabolismo , Proteômica/métodos , Alvéolos Pulmonares/citologia , Aspergilose Pulmonar/metabolismo , Adulto , Idoso , Animais , Linhagem Celular , Metabolismo Energético , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Feminino , Flavoproteínas/genética , Regulação da Expressão Gênica , Humanos , L-Aminoácido Oxidase/genética , Masculino , Camundongos , Pessoa de Meia-Idade , Fosforilação Oxidativa , Mapas de Interação de Proteínas , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/microbiologia , Aspergilose Pulmonar/genética
11.
Proc Natl Acad Sci U S A ; 113(8): E1026-33, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26787852

RESUMO

Invasive pulmonary aspergillosis (IPA) is a life-threatening lung disease caused by the fungus Aspergillus fumigatus, and is a leading cause of invasive fungal infection-related mortality and morbidity in patients with hematological malignancies and bone marrow transplants. We developed and tested a novel probe for noninvasive detection of A. fumigatus lung infection based on antibody-guided positron emission tomography and magnetic resonance (immunoPET/MR) imaging. Administration of a [(64)Cu]DOTA-labeled A. fumigatus-specific monoclonal antibody (mAb), JF5, to neutrophil-depleted A. fumigatus-infected mice allowed specific localization of lung infection when combined with PET. Optical imaging with a fluorochrome-labeled version of the mAb showed colocalization with invasive hyphae. The mAb-based newly developed PET tracer [(64)Cu]DOTA-JF5 distinguished IPA from bacterial lung infections and, in contrast to [(18)F]FDG-PET, discriminated IPA from a general increase in metabolic activity associated with lung inflammation. To our knowledge, this is the first time that antibody-guided in vivo imaging has been used for noninvasive diagnosis of a fungal lung disease (IPA) of humans, an approach with enormous potential for diagnosis of infectious diseases and with potential for clinical translation.


Assuntos
Anticorpos Antifúngicos/farmacologia , Anticorpos Monoclonais Murinos/farmacologia , Aspergillus fumigatus , Imageamento por Ressonância Magnética/métodos , Tomografia por Emissão de Pósitrons/métodos , Aspergilose Pulmonar/diagnóstico por imagem , Animais , Humanos , Camundongos , Radiografia
12.
Nat Methods ; 12(5): 445-52, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25775045

RESUMO

Neutrophil granulocyte biology is a central issue of immunological research, but the lack of animal models that allow for neutrophil-selective genetic manipulation has delayed progress. By modulating the neutrophil-specific locus Ly6G with a knock-in allele expressing Cre recombinase and the fluorescent protein tdTomato, we generated a mouse model termed Catchup that exhibits strong neutrophil specificity. Transgene activity was found only in very few eosinophils and basophils and was undetectable in bone marrow precursors, including granulomonocytic progenitors (GMPs). Cre-mediated reporter-gene activation allowed for intravital two-photon microscopy of neutrophils without adoptive transfer. Homozygous animals were Ly6G deficient but showed normal leukocyte cellularity in all measured organs. Ly6G-deficient neutrophils were functionally normal in vitro and in multiple models of sterile or infectious inflammation in vivo. However, Cre-mediated deletion of FcγRIV in neutrophils reduced the cells' recruitment to immune-complex-mediated peritonitis, suggesting a cell-intrinsic role for activating Fc receptors in neutrophil trafficking.


Assuntos
Neutrófilos/citologia , Neutrófilos/fisiologia , Animais , Antígenos Ly/genética , Antígenos Ly/metabolismo , Morte Celular , Movimento Celular , Feminino , Regulação da Expressão Gênica/fisiologia , Técnicas de Transferência de Genes , Genótipo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Peritonite/patologia , Espécies Reativas de Oxigênio , Transgenes/genética
13.
Eur J Immunol ; 46(8): 2028-42, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27184067

RESUMO

To assess the role of alveolar macrophages (AMs) during a pulmonary Aspergillus fumigatus infection AMs were depleted by intratracheal application of diphtheria toxin (DTX) to transgenic CD11c.DTR mice prior to fungal infection. Unexpectedly, all CD11c.DTR mice treated with DTX died within 4-5 days, whether being infected with A. fumigatus or not. Despite measurable impact of DTX on lung functional parameters, these constrictions could not explain the high mortality rate. Instead, DTX-treated CD11c.DTR animals developed fulminant myocarditis (FM) characterized by massive leukocyte infiltration and myocardial cell destruction, including central parts of the heart's stimulus transmission system. In fact, standard limb lead ECG recordings of diseased but not healthy mice showed a "Brugada"-like pattern with an abnormally high ST segment pointing to enhanced susceptibility for potential lethal arrhythmias. While CD11c.DTR mice are extensively used for the characterization of CD11c(+) cells, including dendritic cells, several studies have already mentioned adverse side effects following DTX treatment. Our results demonstrate that this limitation is based on severe myocarditis but not on the expected lung constrictions, and has to be taken into consideration if this animal model is used. Based on these properties, however, the CD11c.DTR mouse might serve as useful animal model for FM.


Assuntos
Aspergilose/imunologia , Antígeno CD11c/genética , Células Dendríticas/imunologia , Toxina Diftérica/toxicidade , Miocardite/induzido quimicamente , Miocárdio/patologia , Animais , Aspergillus fumigatus , Toxina Diftérica/administração & dosagem , Modelos Animais de Doenças , Eletrocardiografia , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
14.
Immunol Rev ; 251(1): 189-214, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23278750

RESUMO

The lung constantly interacts with the environment through thousands of liters of air that are inhaled daily. This continually transports toxic chemicals and particles or pathogenic microorganisms deep into the respiratory system, posing a challenge to physicochemical barriers and the local immune system. Thus, complex structures and mechanisms have evolved to recognize and fend off environmental dangers while at the same time allowing efficient gas exchange. Here we review our current knowledge regarding cellular mechanisms of the immune system in context with the highly specialized anatomical features of the airways and especially the alveolar compartment. The focus is on fungal and viral infections, merging anatomical aspects well known to pulmonologists with fundamental immunological concepts. We discuss the specialized morphological constraints of immune cells compressed under a continuous layer of the surfactant lining within alveoli as well as the importance of functional polarization of respiratory tract epithelia. Furthermore, we summarize the different types of innate and adaptive immune cells and their relative contribution to lung homeostasis with respect to localization. Finally, we provide a list of currently unresolved questions with high relevance for the field that might serve as food for thought regarding future research directions.


Assuntos
Pulmão/imunologia , Micoses/imunologia , Viroses/imunologia , Imunidade Adaptativa , Animais , Exposição Ambiental , Homeostase , Humanos , Imunidade Celular , Imunidade Inata , Mucosa Respiratória/imunologia
15.
Blood ; 121(24): 4930-7, 2013 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-23645836

RESUMO

Neutrophil recruitment is an important early step in controlling tissue infections or injury. Here, we report that this influx depends on both tissue-resident mast cells and macrophages. Mice with mast cell deficiency recruit reduced numbers of neutrophils in the first few hours of intraperitoneal lipopolysaccharide (LPS) stimulation. Conversely, in mice with clodronate-ablated macrophages, neutrophils extravasate, but have limited ability to reach the peritoneal fluid. Tissue macrophages synthesize neutrophil chemoattractants CXCL1/CXCL2 (CXC chemokine ligands 1/2) in response to LPS. Mast cells also produce these chemokines of which a proportion are preformed in granules. Release of the granules and new CXCL1/CXCL2 synthesis is Toll-like receptor 4-dependent. Both in vivo studies with blocking monoclonal antibodies and in vitro chemotaxis experiments show the neutrophil response to mast cells and macrophages to be CXCL1/CXCL2-dependent. The data are in keeping with the model that mast cells, optimally positioned in close proximity to the vasculature, initiate an early phase of neutrophil recruitment by releasing the chemoattractants CXCL1/CXCL2. Having arrived within the stimulated tissue, neutrophils penetrate further in a macrophage-dependent manner. Therefore, we demonstrate a positive role for mast cells in tissue inflammation and define how this comes about with contribution from a second tissue cell, the macrophage.


Assuntos
Quimiocina CXCL1/metabolismo , Quimiocina CXCL2/metabolismo , Macrófagos Peritoneais/metabolismo , Mastócitos/metabolismo , Infiltração de Neutrófilos , Neutrófilos/metabolismo , Animais , Líquido Ascítico/metabolismo , Quimiocina CXCL1/genética , Quimiocina CXCL2/genética , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Lipopolissacarídeos/toxicidade , Macrófagos Peritoneais/patologia , Mastócitos/patologia , Camundongos , Camundongos Knockout , Neutrófilos/patologia , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
16.
Int J Med Microbiol ; 304(8): 1160-8, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25200858

RESUMO

The mould Aspergillus fumigatus is primarily an opportunistic pathogen of immunocompromised patients. Once fungal spores have been inhaled they encounter cells of the innate immune system, which include dendritic cells (DCs). DCs are the key antigen-presenting cells of the immune system and distinct subtypes, which differ in terms of origin, morphology and function. This study has systematically compared the interactions between A. fumigatus and myeloid DCs (mDCs), plasmacytoid DCs (pDCs) and monocyte-derived DCs (moDCs). Analyses were performed by time-lapse video microscopy, scanning electron microscopy, plating assays, flow cytometry, 25-plex ELISA and transwell assays. The three subsets of DCs displayed distinct responses to the fungus with mDCs and moDCs showing the greatest similarities. mDCs and moDCs both produced rough convolutions and occasionally phagocytic cups upon exposure to A. fumigatus whereas pDCs maintained a smooth appearance. Both mDCs and moDCs phagocytosed conidia and germ tubes, while pDCs did not phagocytose any fungi. Analysis of cytokine release and maturation markers revealed specific differences in pro- and anti-inflammatory patterns between the different DC subsets. These distinct characteristics between the DC subsets highlight their differences and suggest specific roles of moDCs, mDCs and pDCs during their interaction with A. fumigatus in vivo.


Assuntos
Aspergillus fumigatus/imunologia , Células Dendríticas/imunologia , Interações Hospedeiro-Patógeno , Ensaios de Migração Celular , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Humanos , Microscopia Eletrônica de Varredura , Microscopia de Vídeo , Fagocitose , Imagem com Lapso de Tempo
17.
Eukaryot Cell ; 12(1): 50-8, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23125350

RESUMO

Candida albicans strains that are homozygous at the mating type locus can spontaneously and reversibly switch from the normal yeast morphology (white) to an elongated cell type (opaque), which is the mating-competent form of the fungus. White-opaque switching also influences the ability of C. albicans to colonize and proliferate in specific host niches and its susceptibility to host defense mechanisms. We used live imaging to observe the interaction of white and opaque cells with host phagocytic cells. For this purpose, we generated derivatives of the switching-competent strain WO-1 that express green fluorescent protein from a white-specific promoter and red fluorescent protein from an opaque-specific promoter or vice versa. When mixed populations of these differentially labeled white and opaque cells were incubated with human polymorphonuclear neutrophils (PMNs) on a glass slide, the neutrophils selectively phagocytosed and killed white cells, despite frequent physical interaction with opaque cells. White cells were attacked only after they started to form a germ tube, indicating that the suppression of filamentation in opaque cells saved them from recognition by the PMNs. In contrast to neutrophils, dendritic cells internalized white as well as opaque cells. However, when embedded in a collagen matrix, the PMNs also phagocytosed both white and opaque cells with similar efficiency. These results suggest that, depending on the environment, white-opaque switching enables C. albicans to escape from specific host defense mechanisms.


Assuntos
Candida albicans/fisiologia , Candida albicans/crescimento & desenvolvimento , Candida albicans/imunologia , Extensões da Superfície Celular/imunologia , Células Cultivadas , Colágeno/fisiologia , Células Dendríticas/imunologia , Células Dendríticas/microbiologia , Regulação Fúngica da Expressão Gênica , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Interações Hospedeiro-Patógeno , Humanos , Evasão da Resposta Imune , Proteínas Luminescentes/biossíntese , Proteínas Luminescentes/genética , Microscopia de Fluorescência , Microscopia de Vídeo , Neutrófilos/imunologia , Neutrófilos/microbiologia , Fagocitose , Proteína Vermelha Fluorescente
19.
Blood ; 117(16): 4349-57, 2011 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-21224471

RESUMO

Emergency mobilization of neutrophil granulocytes (neutrophils) from the bone marrow (BM) is a key event of early cellular immunity. The hematopoietic cytokine granulocyte-colony stimulating factor (G-CSF) stimulates this process, but it is unknown how individual neutrophils respond in situ. We show by intravital 2-photon microscopy that a systemic dose of human clinical-grade G-CSF rapidly induces the motility and entry of neutrophils into blood vessels within the tibial BM of mice. Simultaneously, the neutrophil-attracting chemokine KC (Cxcl1) spikes in the blood. In mice lacking the KC receptor Cxcr2, G-CSF fails to mobilize neutrophils and antibody blockade of Cxcr2 inhibits the mobilization and induction of neutrophil motility in the BM. KC is expressed by megakaryocytes and endothelial cells in situ and is released in vitro by megakaryocytes isolated directly from BM. This production of KC is strongly increased by thrombopoietin (TPO). Systemic G-CSF rapidly induces the increased production of TPO in BM. Accordingly, a single injection of TPO mobilizes neutrophils with kinetics similar to G-CSF, and mice lacking the TPO receptor show impaired neutrophil mobilization after short-term G-CSF administration. Thus, a network of signaling molecules, chemokines, and cells controls neutrophil release from the BM, and their mobilization involves rapidly induced Cxcr2-mediated motility controlled by TPO as a pacemaker.


Assuntos
Células da Medula Óssea/citologia , Fator Estimulador de Colônias de Granulócitos/imunologia , Neutrófilos/citologia , Receptores de Interleucina-8B/imunologia , Trombopoetina/imunologia , Animais , Medula Óssea/imunologia , Células da Medula Óssea/imunologia , Osso e Ossos/citologia , Linhagem Celular , Movimento Celular , Células Cultivadas , Humanos , Megacariócitos/citologia , Megacariócitos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/imunologia
20.
ISME J ; 17(10): 1789-1792, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37468677

RESUMO

Despite important ecological roles posited for virocells (i.e., cells infected with viruses), studying individual cells in situ is technically challenging. We introduce here a novel correlative microscopic approach to study the ecophysiology of virocells. By conducting concerted virusFISH, 16S rRNA FISH, and scanning electron microscopy interrogations of uncultivated archaea, we linked morphologies of various altiarchaeal cells to corresponding phylogenetic signals and indigenous virus infections. While uninfected cells exhibited moderate separation between fluorescence signals of ribosomes and DNA, virocells displayed complete cellular segregation of chromosomal DNA from viral DNA, the latter co-localizing with host ribosome signals. A similar spatial separation was observed in dividing cells, with viral signals congregating near ribosomes at the septum. These observations suggest that replication of these uncultivated viruses occurs alongside host ribosomes, which are used to generate the required proteins for virion assembly. Heavily infected cells sometimes displayed virus-like particles attached to their surface, which agree with virus structures in cells observed via transmission electron microscopy. Consequently, this approach is the first to link genomes of uncultivated viruses to their respective structures and host cells. Our findings shed new light on the complex ecophysiology of archaeal virocells in deep subsurface biofilms and provide a solid framework for future in situ studies of virocells.


Assuntos
Archaea , Vírus , Archaea/genética , Filogenia , RNA Ribossômico 16S/genética , Vírus/genética , DNA Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA