RESUMO
SignificanceIt is now established that many neurons can release multiple transmitters. Recent studies revealed that fast-acting neurotransmitters, glutamate and GABA, are coreleased from the same presynaptic terminals in some adult brain regions. The dentate gyrus (DG) granule cells (GCs) are innervated by the hypothalamic supramammillary nucleus (SuM) afferents that corelease glutamate and GABA. However, how these functionally opposing neurotransmitters contribute to DG information processing remains unclear. We show that glutamatergic, but not GABAergic, cotransmission exhibits long-term potentiation (LTP) at SuM-GC synapses. By the excitatory selective LTP, the excitation/inhibition balance of SuM inputs increases, and GC firing is enhanced. This study provides evidence that glutamatergic/GABAergic cotransmission balance is rapidly changed in an activity-dependent manner, and such plasticity may modulate DG activity.
Assuntos
Giro Denteado , Potenciação de Longa Duração , Giro Denteado/fisiologia , Ácido Glutâmico , Potenciação de Longa Duração/fisiologia , Neurônios/fisiologia , Neurotransmissores , Sinapses/fisiologia , Ácido gama-AminobutíricoRESUMO
The supramammillary nucleus (SuM) is a small region in the ventromedial posterior hypothalamus. The SuM has been relatively understudied with much of the prior focus being on its connection with septo-hippocampal circuitry. Thus, most studies conducted until the 21st century examined its role in hippocampal processes, such as theta rhythm and learning/memory. In recent years, the SuM has been "rediscovered" as a crucial hub for several behavioral and cognitive processes, including reward-seeking, exploration, and social memory. Additionally, it has been shown to play significant roles in hippocampal plasticity and adult neurogenesis. This review highlights findings from recent studies using cutting-edge systems neuroscience tools that have shed light on these fascinating roles for the SuM.
Assuntos
Hipotálamo Posterior , Motivação , Hipocampo , Ritmo Teta , CogniçãoRESUMO
It is established that neurogenesis of dentate gyrus is increased after ischemic insult, although the regulatory mechanisms have not yet been elucidated. In this study, we focused on Ezh2 which suppresses gene expression through catalyzing trimethylation of lysine 27 of histone 3. Male gerbils were injected with adeno-associated virus (AAV) carrying shRNA targeting to Ezh2 into right dentate gyrus 2 weeks prior to forebrain ischemia. One week after ischemia, animals were injected with thymidine analogue to label proliferating cells. Three weeks after ischemia, animals were killed for histological analysis. AAV-mediated knockdown of Ezh2 significantly decreased the ischemia-induced increment of proliferating cells, and the proliferated cells after ischemia showed significantly longer migration from subgranular zone (SGZ), compared to the control group. Furthermore, the number of neural stem cells in SGZ significantly decreased after ischemia with Ezh2 knockdown group. Of note, Ezh2 knockdown did not affect the number of proliferating cells or the migration from SGZ in the non-ischemic condition. Our data showed that, specifically after ischemia, Ezh2 knockdown shifted the balance between self-renewal and differentiation toward differentiation in adult dentate gyrus.
Assuntos
Giro Denteado , Dependovirus , Proteína Potenciadora do Homólogo 2 de Zeste , Gerbillinae , Neurônios , Prosencéfalo , Animais , Masculino , Isquemia Encefálica/patologia , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Diferenciação Celular , Movimento Celular , Proliferação de Células , Giro Denteado/patologia , Giro Denteado/metabolismo , Dependovirus/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Técnicas de Silenciamento de Genes , Células-Tronco Neurais/metabolismo , Neurogênese/genética , Neurônios/metabolismo , Neurônios/patologia , Prosencéfalo/patologia , Prosencéfalo/metabolismo , Prosencéfalo/irrigação sanguíneaRESUMO
Retrograde signaling at the synapse is a fundamental way by which neurons communicate and neuronal circuit function is fine-tuned upon activity. While long-term changes in neurotransmitter release commonly rely on retrograde signaling, the mechanisms remain poorly understood. Here, we identified adenosine/A2A receptor (A2AR) as a retrograde signaling pathway underlying presynaptic long-term potentiation (LTP) at a hippocampal excitatory circuit critically involved in memory and epilepsy. Transient burst activity of a single dentate granule cell induced LTP of mossy cell synaptic inputs, a BDNF/TrkB-dependent form of plasticity that facilitates seizures. Postsynaptic TrkB activation released adenosine from granule cells, uncovering a non-conventional BDNF/TrkB signaling mechanism. Moreover, presynaptic A2ARs were necessary and sufficient for LTP. Lastly, seizure induction released adenosine in a TrkB-dependent manner, while removing A2ARs or TrkB from the dentate gyrus had anti-convulsant effects. By mediating presynaptic LTP, adenosine/A2AR retrograde signaling may modulate dentate gyrus-dependent learning and promote epileptic activity.
Assuntos
Adenosina , Potenciação de Longa Duração , Receptor A2A de Adenosina , Convulsões , Transdução de Sinais , Transmissão Sináptica , Animais , Convulsões/metabolismo , Convulsões/fisiopatologia , Receptor A2A de Adenosina/metabolismo , Adenosina/metabolismo , Transmissão Sináptica/fisiologia , Potenciação de Longa Duração/fisiologia , Camundongos , Giro Denteado/metabolismo , Masculino , Receptor trkB/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Camundongos Endogâmicos C57BL , Hipocampo/metabolismoRESUMO
The endocannabinoid (eCB) 2-arachidonoylglycerol (2-AG) produced by diacylglycerol lipase α (DGLα) is one of the best-characterized retrograde messengers at central synapses. It has been thought that 2-AG is produced 'on demand' upon activation of postsynaptic neurons. However, recent studies propose that 2-AG is pre-synthesized by DGLα and stored in neurons, and that 2-AG is released from such 'pre-formed pools' without the participation of DGLα. To address whether the 2-AG source for retrograde signalling is the on-demand biosynthesis by DGLα or the mobilization from pre-formed pools, we examined the effects of acute pharmacological inhibition of DGL by a novel potent DGL inhibitor, OMDM-188, on retrograde eCB signalling triggered by Ca(2+) elevation, Gq/11 protein-coupled receptor activation or synergy of these two stimuli in postsynaptic neurons. We found that pretreatment for 1 h with OMDM-188 effectively blocked depolarization-induced suppression of inhibition (DSI), a purely Ca(2+)-dependent form of eCB signalling, in slices from the hippocampus, striatum and cerebellum. We also found that at parallel fibre-Purkinje cell synapses in the cerebellum OMDM-188 abolished synaptically induced retrograde eCB signalling, which is known to be caused by the synergy of postsynaptic Ca(2+) elevation and group I metabotropic glutamate receptor (I-mGluR) activation. Moreover, brief OMDM-188 treatments for several minutes were sufficient to suppress both DSI and the I-mGluR-induced retrograde eCB signalling in cultured hippocampal neurons. These results are consistent with the hypothesis that 2-AG for synaptic retrograde signalling is supplied as a result of on-demand biosynthesis by DGLα rather than mobilization from presumptive pre-formed pools.
Assuntos
Ácidos Araquidônicos/biossíntese , Endocanabinoides/biossíntese , Glicerídeos/biossíntese , Lipase Lipoproteica/antagonistas & inibidores , Transmissão Sináptica , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Cálcio/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Isoleucina/análogos & derivados , Isoleucina/farmacologia , Lactonas/farmacologia , Lipase Lipoproteica/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Células de Purkinje/metabolismo , Células de Purkinje/fisiologia , Receptores de Glutamato Metabotrópico/metabolismo , Sinapses/metabolismo , Sinapses/fisiologiaRESUMO
Presynaptic long-term potentiation (LTP) is thought to play an important role in learning and memory. However, the underlying mechanism remains elusive because of the difficulty of direct recording during LTP. Hippocampal mossy fiber synapses exhibit pronounced LTP of transmitter release after tetanic stimulation and have been used as a model of presynaptic LTP. Here, we induced LTP by optogenetic tools and applied direct presynaptic patch-clamp recordings. The action potential waveform and evoked presynaptic Ca2+ currents remained unchanged after LTP induction. Membrane capacitance measurements suggested higher release probability of synaptic vesicles without changing the number of release-ready vesicles after LTP induction. Synaptic vesicle replenishment was also enhanced. Furthermore, stimulated emission depletion microscopy suggested an increase in the numbers of Munc13-1 and RIM1 molecules within active zones. We propose that dynamic changes in the active zone components may be relevant for the increased fusion competence and synaptic vesicle replenishment during LTP.
Assuntos
Potenciação de Longa Duração , Fibras Musgosas Hipocampais , Fibras Musgosas Hipocampais/fisiologia , Potenciação de Longa Duração/fisiologia , Sinapses/fisiologia , Vesículas Sinápticas , Potenciais de Ação/fisiologiaRESUMO
Protease-activated receptor 1 (PAR1) is a member of the G-protein coupled receptors that are proteolytically activated by serine proteases. Recent studies suggest a definite contribution of PAR1 to brain functions, including learning and memory. However, cellular mechanisms by which PAR1 activation influences neuronal activity are not well understood. Here we show that PAR1 activation drives retrograde endocannabinoid signaling and thereby regulates synaptic transmission. In cultured hippocampal neurons from rat, PAR1 activation by thrombin or PAR1-specific peptide agonists transiently suppressed inhibitory transmission at cannabinoid-sensitive, but not cannabinoid-insensitive, synapses. The PAR1-induced suppression of synaptic transmission was accompanied by an increase in paired-pulse ratio, and was blocked by a cannabinoid CB(1) receptor antagonist. The PAR1-induced suppression was blocked by pharmacological inhibition of postsynaptic diacylglycerol lipase (DGL), a key enzyme for biosynthesis of the major endocannabinoid 2-arachidonoylglycerol (2-AG), and was absent in knock-out mice lacking the α isoform of DGL. The PAR1-induced IPSC suppression remained intact under the blockade of metabotropic glutamate receptors and was largely resistant to the treatment that blocked Ca(2+) elevation in glial cells following PAR1 activation, which excludes the major contribution of glial PAR1 in IPSC suppression. We conclude that activation of neuronal PAR1 triggers retrograde signaling mediated by 2-AG, which activates presynaptic CB(1) receptors and suppresses transmitter release at hippocampal inhibitory synapses.
Assuntos
Ácidos Araquidônicos/biossíntese , Moduladores de Receptores de Canabinoides/fisiologia , Endocanabinoides , Glicerídeos/biossíntese , Hipocampo/metabolismo , Neurônios/metabolismo , Neurotransmissores/fisiologia , Receptor PAR-1/fisiologia , Transmissão Sináptica/fisiologia , Animais , Ácidos Araquidônicos/fisiologia , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Células Cultivadas , Feminino , Glicerídeos/fisiologia , Hipocampo/citologia , Masculino , Camundongos , Camundongos Knockout , Neurônios/fisiologia , Ratos , Ratos Sprague-Dawley , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/fisiologia , Receptor PAR-1/agonistasRESUMO
The hippocampus receives glutamatergic and GABAergic inputs from subcortical regions. Despite the important roles of these subcortical inputs in the regulation of hippocampal circuit, it has not been explored whether associative activation of the subcorticohippocampal pathway induces Hebbian plasticity of subcortical inputs. Here, we demonstrate that the hypothalamic supramammillary nucleus (SuM) to the dentate granule cell (GC) synapses, which co-release glutamate and GABA, undergo associative long-term potentiation (LTP) of glutamatergic, but not GABAergic, co-transmission. This LTP is induced by pairing of SuM inputs with GC spikes. We found that this Hebbian LTP is input-specific, requires NMDA receptors and CaMKII activation, and is expressed postsynaptically. By the net increase in excitatory drive of SuM inputs following LTP induction, associative inputs of SuM and the perforant path effectively discharge GCs. Our results highlight the important role of associative plasticity at SuM-GC synapses in the regulation of dentate gyrus activity and for the encoding of SuM-related information.
Assuntos
Giro Denteado , Potenciação de Longa Duração , Potenciação de Longa Duração/fisiologia , Giro Denteado/metabolismo , Hipocampo/fisiologia , Neurônios/fisiologia , Via Perfurante/fisiologia , Sinapses/metabolismoRESUMO
Marijuana smoking elicits various psychoactive effects through type 1 cannabinoid receptors (CB(1)Rs) in the brain. CB(1)R is a seven-transmembrane domain. G(i/o)-protein coupled receptors, and is expressed throughout the central nervous system including the hippocampus, cerebellum, striatum and cerebral cortex. Endogenous ligands for CB(1)R (endocannabinoids) are lipid in nature, and anandamide and 2-arachidonoylglycerol (2-AG) are considered to be the two major endocannabinoids. Endocannabinoids are known to function as retrograde messengers at synapses. Endocannabinoids are released from postsynaptic neurons in activity-dependent manners, and retrogradely activate presynaptic CB(1)Rs, resulting in short-term or long-term suppression of synaptic transmission. Endocannabinoid-mediated retrograde signaling is observed at various brain regions and considered as a general mechanism of synaptic modulation in the brain. Endocannabinoid release is triggered by postsynaptic Ca2+ elevation or activation of G(q/11)-protein coupled receptors. Recent studies have demonstrated that 2-AG mediates retrograde signaling at synapses in the brain. Endocannabinoid-mediated retrograde signaling is involved in long-term synaptic plasticity in several brain regions. At behavioral level, endocannabinoid signaling is known to be involved in hippocampus-, amygdala- and cerebellum-dependent learning and memory.
Assuntos
Moduladores de Receptores de Canabinoides/fisiologia , Endocanabinoides , Transmissão Sináptica/fisiologia , Animais , Encéfalo/fisiologia , Plasticidade Neuronal/fisiologiaRESUMO
Dendritic spines function as microcompartments that can modify the efficiency of their associated synapses. Here, we analyzed stimulus-dependent molecular changes in spines. The F-actin capping protein CapZ accumulates in parts of dendritic spines within regions where long-term potentiation has been induced. We produced a transgenic mouse line, AiCE-Tg, in which CapZ tagged with enhanced green fluorescence protein (EGFP-CapZ) is expressed. Twenty minutes after unilateral visual or somatosensory stimulation in AiCE-Tg mice, relative EGFP-CapZ signal intensification was seen in a subset of dendritic spines selectively in stimulated-side cortices; this right-left difference was abolished by NMDA receptor blockade. Immunolabeling of α-actinin, a PSD-95 binding protein that can recruit AMPA receptors, showed that the α-actinin signals colocalized more frequently in spines with the brightest EGFP-CapZ signals (top 100) than in spines with more typical EGFP-CapZ signal strength (top 1,000). This stimulus-dependent in vivo redistribution of EGFP-CapZ represents a novel molecular event with plasticity-like characteristics, and bright EGFP-CapZ in AiCE-Tg mice make high-CapZ spines traceable in vivo and ex vivo. This mouse line has the potential to be used to reveal sequential molecular events, including synaptic tagging, and to relate multiple types of plasticity in these spines, extending knowledge related to memory mechanisms.
Assuntos
Encéfalo/metabolismo , Espinhas Dendríticas/metabolismo , Actinina/metabolismo , Animais , Proteína 4 Homóloga a Disks-Large/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais/fisiologia , Sinapses/metabolismoRESUMO
Endocannabinoids mediate retrograde signal and modulate transmission efficacy at various central synapses. Although endocannabinoid release is induced by either depolarization or activation of G(q/11)-coupled receptors, it is markedly enhanced by the coincidence of depolarization and receptor activation. Here we report that this coincidence is detected by phospholipase Cbeta1 (PLCbeta1) in hippocampal neurons. By measuring cannabinoid-sensitive synaptic currents, we found that the receptor-driven endocannabinoid release was dependent on physiological levels of intracellular Ca(2+) concentration ([Ca(2+)](i)), and markedly enhanced by depolarization-induced [Ca(2+)](i) elevation. Furthermore, we measured PLC activity in intact neurons by using exogenous TRPC6 channel as a biosensor for the PLC product diacylglycerol and found that the receptor-driven PLC activation exhibited similar [Ca(2+)](i) dependence to that of endocannabinoid release. Neither endocannabinoid release nor PLC activation was induced by receptor activation in PLCbeta1 knockout mice. We therefore conclude that PLCbeta1 serves as a coincidence detector through its Ca(2+) dependency for endocannabinoid release in hippocampal neurons.
Assuntos
Moduladores de Receptores de Canabinoides/metabolismo , Endocanabinoides , Hipocampo/metabolismo , Isoenzimas/metabolismo , Neurônios/metabolismo , Transdução de Sinais/fisiologia , Transmissão Sináptica/fisiologia , Fosfolipases Tipo C/metabolismo , Animais , Técnicas Biossensoriais , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Células Cultivadas , Diglicerídeos/metabolismo , Líquido Intracelular/metabolismo , Isoenzimas/genética , Camundongos , Camundongos Knockout , Fosfolipase C beta , Ratos , Receptores Muscarínicos/metabolismo , Canais de Cátion TRPC , Canal de Cátion TRPC6 , Fosfolipases Tipo C/genéticaRESUMO
Endogenous cannabinoids (endocannabinoids) serve as retrograde messengers at synapses in various regions of the brain. They are released from postsynaptic neurons and cause transient and long-lasting reduction of neurotransmitter release through activation of presynaptic cannabinoid receptors. Endocannabinoid release is induced either by increased postsynaptic Ca(2+) levels or by activation of G(q/11)-coupled receptors. When these two stimuli coincide, endocannabinoid release is markedly enhanced, which is attributed to the Ca(2+) dependency of phospholipase Cbeta (PLCbeta). This Ca(2+)-assisted receptor-driven endocannabinoid release is suggested to participate in various forms of synaptic plasticity, including short-term associative plasticity in the cerebellum and spike-timing-dependent long-term depression in the somatosensory cortex. In these forms of plasticity, PLCbeta seems to function as a coincident detector of presynaptic and postsynaptic activities.
Assuntos
Cálcio/fisiologia , Moduladores de Receptores de Canabinoides/metabolismo , Endocanabinoides , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Animais , Modelos BiológicosRESUMO
Endocannabinoids function as retrograde messengers and modulate synaptic transmission through presynaptic cannabinoid CB1 receptors. The magnitude and time course of endocannabinoid signaling are thought to depend on the balance between the production and degradation of endocannabinoids. The major endocannabinoid 2-arachidonoylglycerol (2-AG) is hydrolyzed by monoacylglycerol lipase (MGL), which is shown to be localized at axon terminals. In the present study, we investigated how MGL regulates endocannabinoid signaling and influences synaptic transmission in the hippocampus. We found that MGL inhibitors, methyl arachidonoyl fluorophosphonate and arachidonoyl trifluoromethylketone, caused a gradual suppression of cannabinoid-sensitive IPSCs in cultured hippocampal neurons. This suppression was reversed by blocking CB1 receptors and was attenuated by inhibiting 2-AG synthesis, indicating that MGL scavenges constitutively released 2-AG. We also found that the MGL inhibitors significantly prolonged the suppression of both IPSCs and EPSCs induced by exogenous 2-AG and depolarization-induced suppression of inhibition/excitation, a phenomenon known to be mediated by retrograde endocannabinoid signaling. In contrast, inhibitors of other endocannabinoid hydrolyzing enzymes, fatty acid amide hydrolase and cyclooxygenase-2, had no effect on the 2-AG-induced IPSC suppression. These results strongly suggest that presynaptic MGL not only hydrolyzes 2-AG released from activated postsynaptic neurons but also contributes to degradation of constitutively produced 2-AG and prevention of its accumulation around presynaptic terminals. Thus, the MGL activity determines basal endocannabinoid tone and terminates retrograde endocannabinoid signaling in the hippocampus.
Assuntos
Moduladores de Receptores de Canabinoides/fisiologia , Endocanabinoides , Hipocampo/enzimologia , Monoacilglicerol Lipases/metabolismo , Terminações Pré-Sinápticas/enzimologia , Transdução de Sinais/fisiologia , Animais , Células Cultivadas , Ativação Enzimática/fisiologia , Hipocampo/citologia , Hipocampo/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Terminações Pré-Sinápticas/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor CB1 de Canabinoide/metabolismo , Transmissão Sináptica/fisiologiaRESUMO
Depolarization-induced suppression of inhibition (DSI) or excitation (DSE) is a well-known form of endocannabinoid-mediated short-term plasticity that is induced by postsynaptic depolarization. It is generally accepted that DSI/DSE is triggered by Ca(2+) influx through voltage-gated Ca(2+) channels. It is also demonstrated that DSI/DSE is mediated by 2-arachidonoylglycerol (2-AG). However, how Ca(2+) induces 2-AG production is still unclear. In the present study, we investigated molecular mechanisms underlying the Ca(2+)-driven 2-AG production. Using cannabinoid-sensitive inhibitory synapses of cultured hippocampal neurons, we tested several inhibitors for enzymes that are supposed to be involved in 2-AG metabolism. The chemicals we tested include inhibitors for phospholipase C (U73122 and ET-18), diacylglycerol kinase (DGK inhibitor 1), phosphatidic acid phosphohydrolase (propranolol), and diacylglycerol lipase (DGL; RHC-80267 and tetrahydrolipstatin (THL)). However, unfavorable side effects were observed with these inhibitors, except for THL. Furthermore, we found that RHC-80267 hardly inhibited the endocannabinoid release driven by G(q/11)-coupled receptors, which is thought to be DGL-dependent. By contrast, THL exhibited no side effects as long as we tested, and was confirmed to inhibit the DGL-dependent process. Using THL as a DGL inhibitor, we demonstrated that DGL is involved in both hippocampal DSI and cerebellar DSE. To test a possible involvement of PLCdelta in DSI, we examined hippocampal DSI in PLCdelta1, delta3 and delta4-knockout mice. However, there was no significant difference in the DSI magnitude between these knockout mice and wild-type mice. The present study clearly shows that DGL is a prerequisite for DSI/DSE. The enzymes yielding DG remain to be determined.
Assuntos
Moduladores de Receptores de Canabinoides/metabolismo , Lipase Lipoproteica/metabolismo , Neurônios , Antagonistas Adrenérgicos beta/farmacologia , Animais , Animais Recém-Nascidos , Ácidos Araquidônicos/metabolismo , Cálcio/metabolismo , Células Cultivadas , Estimulação Elétrica , Endocanabinoides , Inibidores Enzimáticos/farmacologia , Glicerídeos/metabolismo , Hipocampo/citologia , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/fisiologia , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Potenciais da Membrana/efeitos da radiação , Camundongos , Camundongos Knockout , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/efeitos da radiação , Técnicas de Patch-Clamp , Fosfolipase C delta/deficiência , Propranolol/farmacologia , Ratos , Ratos Sprague-DawleyRESUMO
The supramammillary nucleus (SuM) of the hypothalamus projects to the dentate gyrus (DG) and the CA2 region of the hippocampus. Although the SuM-to-hippocampus circuits have been implicated in spatial and emotional memory formation, little is known about precise neural connections between the SuM and hippocampus. Here, we report that axons of SuM neurons make monosynaptic connections to granule cells (GCs) and GABAergic interneurons, but not to hilar mossy cells, in the DG and co-release glutamate and γ-aminobutyric acid (GABA) at these synapses. Although inputs from the SuM can excite some interneurons, the inputs alone fail to generate spikes in GCs. However, despite the insufficient excitatory drive and GABAergic co-transmission, SuM inputs have net excitatory effects on GCs and can potentiate GC firing when temporally associated with perforant path inputs. Our results indicate that the SuM influences DG information processing by modulating GC outputs.
Assuntos
Vias Aferentes/fisiologia , Giro Denteado/citologia , Giro Denteado/metabolismo , Ácido Glutâmico/metabolismo , Hipotálamo Posterior/fisiologia , Ácido gama-Aminobutírico/metabolismo , Potenciais de Ação/fisiologia , Animais , Interneurônios/fisiologia , Camundongos Endogâmicos C57BL , Fibras Musgosas Hipocampais/fisiologia , Optogenética , Via Perfurante/fisiologia , Sinapses/metabolismoRESUMO
Optogenetics has revolutionized the experimental interrogation of neural circuits and holds promise for the treatment of neurological disorders. It is limited, however, because visible light cannot penetrate deep inside brain tissue. Upconversion nanoparticles (UCNPs) absorb tissue-penetrating near-infrared (NIR) light and emit wavelength-specific visible light. Here, we demonstrate that molecularly tailored UCNPs can serve as optogenetic actuators of transcranial NIR light to stimulate deep brain neurons. Transcranial NIR UCNP-mediated optogenetics evoked dopamine release from genetically tagged neurons in the ventral tegmental area, induced brain oscillations through activation of inhibitory neurons in the medial septum, silenced seizure by inhibition of hippocampal excitatory cells, and triggered memory recall. UCNP technology will enable less-invasive optical neuronal activity manipulation with the potential for remote therapy.
Assuntos
Encéfalo/fisiologia , Estimulação Encefálica Profunda/métodos , Nanopartículas , Neurônios/fisiologia , Optogenética/métodos , Animais , Luz , Camundongos , Camundongos TransgênicosRESUMO
Marijuana affects neural functions through the binding of its active component (Delta(9)-THC) to cannabinoid receptors in the CNS. Recent studies have elucidated that endogenous ligands for cannabinoid receptors, endocannabinoids, serve as retrograde messengers at central synapses. Endocannabinoids are produced on demand in activity-dependent manners and released from postsynaptic neurons. The released endocannabinoids travel backward across the synapse, activate presynaptic CB1 cannabinoid receptors, and modulate presynaptic functions. Retrograde endocannabinoid signaling is crucial for certain forms of short-term and long-term synaptic plasticity at excitatory or inhibitory synapses in many brain regions, and thereby contributes to various aspects of brain function including learning and memory. Molecular identities of the CB1 receptor and enzymes involved in production and degradation of endocannabinoids have been elucidated. Anatomical studies have demonstrated unique distributions of these molecules around synapses, which provide morphological bases for the roles of endocannabinoids as retrograde messengers. CB1-knockout mice exhibit various behavioral abnormalities and multiple defects in synaptic plasticity, supporting the notion that endocannabinoid signaling is involved in various aspects of neural function. In this review article, the authors describe molecular mechanisms of the endocannabinoid-mediated synaptic modulation and its possible physiological significance.
Assuntos
Moduladores de Receptores de Canabinoides/metabolismo , Sistema Nervoso Central/metabolismo , Endocanabinoides , Terminações Pré-Sinápticas/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Transmissão Sináptica/fisiologia , Animais , Moduladores de Receptores de Canabinoides/agonistas , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/ultraestrutura , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/fisiologia , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Terminações Pré-Sinápticas/efeitos dos fármacos , Terminações Pré-Sinápticas/ultraestrutura , Receptor CB1 de Canabinoide/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Membranas Sinápticas/efeitos dos fármacos , Membranas Sinápticas/metabolismo , Transmissão Sináptica/efeitos dos fármacosRESUMO
Excitatory hilar mossy cells (MCs) in the dentate gyrus receive inputs from dentate granule cells (GCs) and project back to GCs locally, contralaterally, and along the longitudinal axis of the hippocampus, thereby establishing an associative positive-feedback loop and connecting functionally diverse hippocampal areas. MCs also synapse with GABAergic interneurons that mediate feed-forward inhibition onto GCs. Surprisingly, although these circuits have been implicated in both memory formation (e.g., pattern separation) and temporal lobe epilepsy, little is known about activity-dependent plasticity of their synaptic connections. Here, we report that MC-GC synapses undergo a presynaptic, NMDA-receptor-independent form of long-term potentiation (LTP) that requires postsynaptic brain-derived neurotrophic factor (BDNF)/TrkB and presynaptic cyclic AMP (cAMP)/PKA signaling. This LTP is input specific and selectively expressed at MC-GC synapses, but not at the disynaptic inhibitory loop. By increasing the excitation/inhibition balance, MC-GC LTP enhances GC output at the associative MC-GC recurrent circuit and may contribute to dentate-dependent forms of learning and epilepsy.
Assuntos
Giro Denteado/citologia , Potenciação de Longa Duração/fisiologia , Depressão Sináptica de Longo Prazo/fisiologia , Fibras Musgosas Hipocampais/fisiologia , Neurônios/fisiologia , Sinapses/fisiologia , Animais , Animais Recém-Nascidos , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Channelrhodopsins , Inibidores Enzimáticos/farmacologia , Feminino , Potenciação de Longa Duração/efeitos dos fármacos , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Masculino , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/metabolismo , Neurotransmissores/farmacologia , Ratos , Ratos Sprague-Dawley , Receptor trkB/genética , Receptor trkB/metabolismo , Receptores Pré-Sinápticos/metabolismo , Transdução de Sinais/efeitos dos fármacosRESUMO
Endocannabinoids mediate retrograde signaling and modulate synaptic transmission in various regions of the CNS. Depolarization-induced elevation of intracellular Ca2+ concentration causes endocannabinoid-mediated suppression of excitatory/inhibitory synaptic transmission. Activation of G(q/11)-coupled receptors including group I metabotropic glutamate receptors (mGluRs) also causes endocannabinoid-mediated suppression of synaptic transmission. However, precise mechanisms of endocannabinoid production initiated by physiologically relevant synaptic activity remain to be determined. To address this problem, we made whole-cell recordings from Purkinje cells (PCs) in mouse cerebellar slices and examined their excitatory synapses arising from climbing fibers (CFs) and parallel fibers (PFs). We first characterized three distinct modes to induce endocannabinoid release by analyzing CF to PC synapses. The first mode is strong activation of mGluR subtype 1 (mGluR1)-phospholipase C (PLC) beta4 cascade without detectable Ca2+ elevation. The second mode is Ca2+ elevation to a micromolar range without activation of the mGluR1-PLCbeta4 cascade. The third mode is the Ca2+-assisted mGluR1-PLCbeta4 cascade that requires weak mGluR1 activation and Ca2+ elevation to a submicromolar range. By analyzing PF to PC synapses, we show that the third mode is essential for effective endocannabinoid release from PCs by excitatory synaptic activity. Furthermore, our biochemical analysis demonstrates that combined weak mGluR1 activation and mild depolarization in PCs effectively produces 2-arachidonoylglycerol (2-AG), a candidate of endocannabinoid, whereas either stimulus alone did not produce detectable 2-AG. Our results strongly suggest that under physiological conditions, excitatory synaptic inputs to PCs activate the Ca2+-assisted mGluR1-PLCbeta4 cascade, and thereby produce 2-AG, which retrogradely modulates synaptic transmission to PCs.