Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 150(13)2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37294080

RESUMO

Coordinated spatio-temporal regulation of the determination and differentiation of neural stem cells is essential for brain development. Failure to integrate multiple factors leads to defective brain structures or tumour formation. Previous studies suggest changes of chromatin state are needed to direct neural stem cell differentiation, but the mechanisms are unclear. Analysis of Snr1, the Drosophila orthologue of SMARCB1, an ATP-dependent chromatin remodelling protein, identified a key role in regulating the transition of neuroepithelial cells into neural stem cells and subsequent differentiation of neural stem cells into the cells needed to build the brain. Loss of Snr1 in neuroepithelial cells leads to premature neural stem cell formation. Additionally, loss of Snr1 in neural stem cells results in inappropriate perdurance of neural stem cells into adulthood. Snr1 reduction in neuroepithelial or neural stem cells leads to the differential expression of target genes. We find that Snr1 is associated with the actively transcribed chromatin region of these target genes. Thus, Snr1 likely regulates the chromatin state in neuroepithelial cells and maintains chromatin state in neural stem cells for proper brain development.


Assuntos
Proteínas de Drosophila , Fatores de Transcrição , Animais , Fatores de Transcrição/metabolismo , Transativadores/genética , Montagem e Desmontagem da Cromatina/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Diferenciação Celular/genética , Cromatina
2.
J Cell Sci ; 135(7)2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35274690

RESUMO

Both peroxisomes and lipid droplets regulate cellular lipid homeostasis. Direct inter-organellar contacts as well as novel roles for proteins associated with peroxisome or lipid droplets occur when cells are induced to liberate fatty acids from lipid droplets. We have shown a non-canonical role for a subset of peroxisome-assembly [Peroxin (Pex)] proteins in this process in Drosophila. Transmembrane proteins Pex3, Pex13 and Pex14 were observed to surround newly formed lipid droplets. Trafficking of Pex14 to lipid droplets was enhanced by loss of Pex19, which directs insertion of transmembrane proteins like Pex14 into the peroxisome bilayer membrane. Accumulation of Pex14 around lipid droplets did not induce changes to peroxisome size or number, and co-recruitment of the remaining Peroxins was not needed to assemble peroxisomes observed. Increasing the relative level of Pex14 surrounding lipid droplets affected the recruitment of Hsl lipase. Fat body-specific reduction of these lipid droplet-associated Peroxins caused a unique effect on larval fat body development and affected their survival on lipid-enriched or minimal diets. This revealed a heretofore unknown function for a subset of Pex proteins in regulating lipid storage. This article has an associated First Person interview with Kazuki Ueda, joint first author of the paper.


Assuntos
Drosophila , Gotículas Lipídicas , Animais , Drosophila/metabolismo , Humanos , Gotículas Lipídicas/metabolismo , Lipídeos , Proteínas de Membrana/metabolismo , Peroxinas , Peroxissomos/metabolismo
3.
Dev Biol ; 425(1): 58-69, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28322734

RESUMO

The Drosophila vestigial gene is required for proliferation and differentiation of the adult wing and for differentiation of larval and adult muscle identity. Vestigial is part of a multi-protein transcription factor complex, which includes Scalloped, a TEAD-class DNA binding protein. Binding Scalloped is necessary for translocation of Vestigial into the nucleus. We show that Vestigial is extensively post-translationally modified and at least one of these modifications is required for proper function during development. We have shown that there is p38-dependent phosphorylation of Serine 215 in the carboxyl-terminal region of Vestigial. Phosphorylation of Serine 215 occurs in the nucleus and requires the presence of Scalloped. Comparison of a phosphomimetic and non-phosphorylatable mutant forms of Vestigial shows differences in the ability to rescue the wing and muscle phenotypes associated with a null vestigial allele.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Linhagem Celular , Núcleo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/crescimento & desenvolvimento , Immunoblotting , Microscopia Confocal , Proteína Quinase 11 Ativada por Mitógeno/metabolismo , Músculos/embriologia , Músculos/metabolismo , Mutação , Proteínas Nucleares/metabolismo , Fosforilação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Serina/genética , Serina/metabolismo , Fatores de Transcrição/metabolismo , Asas de Animais/crescimento & desenvolvimento , Asas de Animais/metabolismo
4.
Dev Biol ; 361(2): 412-26, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-22133918

RESUMO

The signalling activities of Merlin and Moesin, two closely related members of the protein 4.1 Ezrin/Radixin/Moesin family, are regulated by conformational changes. These changes are regulated in turn by phosphorylation. The same sterile 20 kinase-Slik co-regulates Merlin or Moesin activity whereby phosphorylation inactivates Merlin, but activates Moesin. Thus, the corresponding coordinate activation of Merlin and inactivation of Moesin would require coordinated phosphatase activity. We find that Drosophila melanogaster protein phosphatase type 1 ß (flapwing) fulfils this role, co-regulating dephosphorylation and altered activity of both Merlin and Moesin. Merlin or Moesin are detected in a complex with Flapwing both in-vitro and in-vivo. Directed changes in flapwing expression result in altered phosphorylation of both Merlin and Moesin. These changes in the levels of Merlin and Moesin phosphorylation following reduction of flapwing expression are associated with concomitant defects in epithelial integrity and increase in apoptosis in developing tissues such as wing imaginal discs. Functionally, the defects can be partially recapitulated by over expression of proteins that mimic constitutively phosphorylated or unphosphorylated Merlin or Moesin. Our results suggest that changes in the phosphorylation levels of Merlin and Moesin lead to changes in epithelial organization.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Proteínas de Membrana/metabolismo , Neurofibromina 2/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Animais , Membrana Celular/metabolismo , Polaridade Celular , Drosophila melanogaster/citologia , Drosophila melanogaster/crescimento & desenvolvimento , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Tamanho do Órgão , Fenótipo , Fosforilação , Ligação Proteica , Isoformas de Proteínas/metabolismo , Transporte Proteico , Pupa/citologia , Pupa/metabolismo , Asas de Animais/citologia , Asas de Animais/metabolismo
5.
Methods Mol Biol ; 2643: 455-467, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36952206

RESUMO

Drosophila melanogaster is a proven metazoan model to investigate the fundamentals of human genetic diseases including peroxisome-related disorders. Drosophila have facile cell and animal culture but with a relatively simpler genome and organ morphology compared to vertebrates. Drosophila Schneider 2 (S2) cells have been used extensively as a platform for investigating peroxisome functions like transport along the cytoskeleton via their amenability to RNA-interference (RNAi)-based gene knockdown. Similarly, novel findings regarding tissue-specific roles for peroxisomes have come from studies in developing flies. Individual organs can be targeted for RNAi or gene mutations affecting a limited group of cells in the context of the entire animal. Here, we provide basic protocols on how to visualize peroxisomes and manipulate expression of the Peroxin or other peroxisome genes in S2 cells and developing Drosophila organs.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Humanos , Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Peroxissomos/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Interferência de RNA
6.
J Cell Biol ; 174(3): 349-58, 2006 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-16880270

RESUMO

In mammalian cells, the GW182 protein localizes to cytoplasmic bodies implicated in the regulation of messenger RNA (mRNA) stability, translation, and the RNA interference pathway. Many of these functions have also been assigned to analogous yeast cytoplasmic mRNA processing bodies. We have characterized the single Drosophila melanogaster homologue of the human GW182 protein family, which we have named Gawky (GW). Drosophila GW localizes to punctate, cytoplasmic foci in an RNA-dependent manner. Drosophila GW bodies (GWBs) appear to function analogously to human GWBs, as human GW182 colocalizes with GW when expressed in Drosophila cells. The RNA-induced silencing complex component Argonaute2 and orthologues of LSm4 and Xrn1 (Pacman) associated with 5'-3' mRNA degradation localize to some GWBs. Reducing GW activity by mutation or antibody injection during syncytial embryo development leads to abnormal nuclear divisions, demonstrating an early requirement for GWB-mediated cytoplasmic mRNA regulation. This suggests that gw represents a previously unknown member of a small group of genes that need to be expressed zygotically during early embryo development.


Assuntos
Estruturas Citoplasmáticas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , RNA Mensageiro/metabolismo , Animais , Anticorpos/imunologia , Divisão do Núcleo Celular , Segregação de Cromossomos , Estruturas Citoplasmáticas/ultraestrutura , Proteínas de Drosophila/química , Proteínas de Drosophila/deficiência , Drosophila melanogaster/citologia , Drosophila melanogaster/ultraestrutura , Embrião não Mamífero/citologia , Embrião não Mamífero/embriologia , Embrião não Mamífero/ultraestrutura , Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Mutação/genética , Filogenia , Transporte Proteico , Zigoto/citologia , Zigoto/ultraestrutura
7.
Mol Biol Cell ; 14(5): 1757-68, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12802052

RESUMO

We previously demonstrated that exogenous expression of a truncated form of the tight junction protein ZO-3 affected junctional complex assembly and function. Current results indicate that this ZO-3 construct influences actin cytoskeleton dynamics more globally. We show that expression of the amino-terminal half of ZO-3 (NZO-3) in Madin-Darby canine kidney cells results in a decreased number of stress fibers and focal adhesions and causes an increased rate of cell migration in a wound healing assay. We also demonstrate that RhoA activity is reduced in NZO-3-expressing cells. We determined that ZO-3 interacts with p120 catenin and AF-6, proteins localized to the junctional complex and implicated in signaling pathways important for cytoskeleton regulation and cell motility. We also provide evidence that NZO-3 interacts directly with the C terminus of ZO-3, and we propose a model where altered interactions between ZO-3 and p120 catenin in NZO-3-expressing cells affect RhoA GTPase activity. This study reveals a potential link between ZO-3 and RhoA-related signaling events.


Assuntos
Actinas/metabolismo , Proteínas de Transporte/genética , Citoesqueleto/metabolismo , Rim/metabolismo , Proteínas de Membrana/genética , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Proteínas de Transporte/metabolismo , Cães , Técnicas In Vitro , Proteínas de Membrana/metabolismo , Proteínas da Zônula de Oclusão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA