Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Environ Monit Assess ; 196(9): 807, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39133340

RESUMO

Application of sewage sludge as fertilizer can be beneficial for sustainable agriculture as it could largely account for nitrogen and phosphorus demand for crops and has lower costs compared to other disposal routes, e.g., incineration, and sanitary landfills. This study evaluates the feasibility of pilot-scale pelletization of sewage sludge for non-food crops (e.g., ornamental plants). The co-pelletization method was designed by mixing sewage sludge and binder (tapioca starch) at a 9:1 sludge-to-starch weight ratio. The amount of nitrogen (N), phosphorus (P), and potassium (K) of the resultant pellets were determined at 5.7%, 4.9%, and 0.2%, respectively. Following Malaysian and US Standards, non-essential elements and pathogenicity of the pelletized sewage sludge were measured below the predetermined limits and hence safe for agricultural application. The planting trial using 50% inorganic fertilizer + 50% sewage sludge pellets exhibited a promising result on the growth of the flowering plant Celosia plumosa, with having better dimension and color, 20% higher in height, 4% more chlorophyll content, 54% more leaf, 43% greater stem growth, and 27% more flowers compared to control. Likewise, the planting trial on Tagetes erecta resulted in 10.5% wider leaf, 10.6% heavier leaf dry weight, and 12.5% more chlorophyll content compared to control with full usage of inorganic fertilizer. By considering liquidities to operate the production facility, the economic analysis estimated that the production cost per ton of pelletized sewage sludge produced was USD 0.98.


Assuntos
Agricultura , Fertilizantes , Nitrogênio , Fósforo , Esgotos , Fósforo/análise , Nitrogênio/análise , Agricultura/métodos , Produtos Agrícolas , Nutrientes/análise , Potássio/análise , Eliminação de Resíduos Líquidos/métodos , Projetos Piloto , Malásia , Manihot
2.
Waste Manag Res ; 37(5): 551-555, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30727859

RESUMO

A one-step self-sustained carbonization of coconut shell biomass, carried out in a brick reactor at a relatively low temperature of 300-500°C, successfully produced a biochar-derived adsorbent with 308 m2/g surface area, 2 nm pore diameter, and 0.15 cm3/g total pore volume. The coconut shell biochar qualifies as a nano-adsorbent, supported by scanning electron microscope images, which showed well-developed nano-pores on the surface of the biochar structure, even though there was no separate activation process. This is the first report whereby coconut shell can be converted to biochar-derived nano-adsorbent at a low carbonization temperature, without the need of the activation process. This is superior to previous reports on biochar produced from oil palm empty fruit bunch.


Assuntos
Carvão Vegetal , Cocos , Biomassa , Temperatura
3.
Molecules ; 23(4)2018 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-29614823

RESUMO

The combination of superheated steam (SHS) with ligninolytic enzyme laccase pretreatment together with size reduction was conducted in order to enhance the enzymatic hydrolysis of oil palm biomass into glucose. The oil palm empty fruit bunch (OPEFB) and oil palm mesocarp fiber (OPMF) were pretreated with SHS and ground using a hammer mill to sizes of 2, 1, 0.5 and 0.25 mm before pretreatment using laccase to remove lignin. This study showed that reduction of size from raw to 0.25 mm plays important role in lignin degradation by laccase that removed 38.7% and 39.6% of the lignin from OPEFB and OPMF, respectively. The subsequent saccharification process of these pretreated OPEFB and OPMF generates glucose yields of 71.5% and 63.0%, which represent a 4.6 and 4.8-fold increase, respectively, as compared to untreated samples. This study showed that the combination of SHS with laccase pretreatment together with size reduction could enhance the glucose yield.


Assuntos
Arecaceae/metabolismo , Lacase/metabolismo , Lignina/metabolismo , Biomassa , Óleo de Palmeira/metabolismo
4.
Molecules ; 23(6)2018 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-29880760

RESUMO

Malaysia is the second largest palm oil producer in the world and this industry generates more than 80 million tonnes of biomass every year. When considering the potential of this biomass to be used as a fermentation feedstock, many studies have been conducted to develop a complete process for sugar production. One of the essential processes is the pre-treatment to modify the lignocellulosic components by altering the structural arrangement and/or removing lignin component to expose the internal structure of cellulose and hemicellulose for cellulases to digest it into sugars. Each of the pre-treatment processes that were developed has their own advantages and disadvantages, which are reviewed in this study.


Assuntos
Arecaceae/metabolismo , Biomassa , Metabolismo dos Carboidratos , Fermentação , Arecaceae/química
5.
Molecules ; 23(6)2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-29848973

RESUMO

The present work aimed to investigate the pretreatment of oil palm mesocarp fiber (OPMF) in subcritical H2O-CO2 at a temperature range from 150⁻200 °C and 20⁻180 min with CO2 pressure from 3⁻5 MPa. The pretreated solids and liquids from this process were separated by filtration and characterized. Xylooligosaccharides (XOs), sugar monomers, acids, furans and phenols in the pretreated liquids were analyzed by using HPLC. XOs with a degree of polymerization X2⁻X4 comprising xylobiose, xylotriose, xylotetraose were analyzed by using HPAEC-PAD. Enzymatic hydrolysis was performed on cellulose-rich pretreated solids to observe xylose and glucose production. An optimal condition for XOs production was achieved at 180 °C, 60 min, 3 MPa and the highest XOs obtained was 81.60 mg/g which corresponded to 36.59% of XOs yield from total xylan of OPMF. The highest xylose and glucose yields obtained from pretreated solids were 29.96% and 84.65%, respectively at cellulase loading of 10 FPU/g-substrate.


Assuntos
Arecaceae/química , Dióxido de Carbono/química , Glucose/química , Glucuronatos/química , Oligossacarídeos/química , Água/química , Celulose , Fenômenos Químicos , Concentração de Íons de Hidrogênio , Hidrólise , Compostos Fitoquímicos/química , Açúcares/química
6.
J Ind Microbiol Biotechnol ; 44(6): 869-877, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28197796

RESUMO

A recently developed rapid co-composting of oil palm empty fruit bunch (OPEFB) and palm oil mill effluent (POME) anaerobic sludge is beginning to attract attention from the palm oil industry in managing the disposal of these wastes. However, a deeper understanding of microbial diversity is required for the sustainable practice of the co-compositing process. In this study, an in-depth assessment of bacterial community succession at different stages of the pilot scale co-composting of OPEFB-POME anaerobic sludge was performed using 454-pyrosequencing, which was then correlated with the changes of physicochemical properties including temperature, oxygen level and moisture content. Approximately 58,122 of 16S rRNA gene amplicons with more than 500 operational taxonomy units (OTUs) were obtained. Alpha diversity and principal component analysis (PCoA) indicated that bacterial diversity and distributions were most influenced by the physicochemical properties of the co-composting stages, which showed remarkable shifts of dominant species throughout the process. Species related to Devosia yakushimensis and Desemzia incerta are shown to emerge as dominant bacteria in the thermophilic stage, while Planococcus rifietoensis correlated best with the later stage of co-composting. This study proved the bacterial community shifts in the co-composting stages corresponded with the changes of the physicochemical properties, and may, therefore, be useful in monitoring the progress of co-composting and compost maturity.


Assuntos
Bactérias/classificação , Compostagem/métodos , Resíduos Industriais , Óleo de Palmeira , Esgotos/microbiologia , Bactérias/genética , Bactérias/isolamento & purificação , Biodiversidade , Frutas/química , RNA Ribossômico 16S/genética
7.
Waste Manag Res ; 34(2): 176-80, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26612557

RESUMO

An appropriate technology for waste utilisation, especially for a large amount of abundant pressed-shredded oil palm empty fruit bunch (OFEFB), is important for the oil palm industry. Self-sustained pyrolysis, whereby oil palm biomass was combusted by itself to provide the heat for pyrolysis without an electrical heater, is more preferable owing to its simplicity, ease of operation and low energy requirement. In this study, biochar production under self-sustained pyrolysis of oil palm biomass in the form of oil palm empty fruit bunch was tested in a 3-t large-scale pool-type reactor. During the pyrolysis process, the biomass was loaded layer by layer when the smoke appeared on the top, to minimise the entrance of oxygen. This method had significantly increased the yield of biochar. In our previous report, we have tested on a 30-kg pilot-scale capacity under self-sustained pyrolysis and found that the higher heating value (HHV) obtained was 22.6-24.7 MJ kg(-1) with a 23.5%-25.0% yield. In this scaled-up study, a 3-t large-scale procedure produced HHV of 22.0-24.3 MJ kg(-1) with a 30%-34% yield based on a wet-weight basis. The maximum self-sustained pyrolysis temperature for the large-scale procedure can reach between 600 °C and 700 °C. We concluded that large-scale biochar production under self-sustained pyrolysis was successfully conducted owing to the comparable biochar produced, compared with medium-scale and other studies with an electrical heating element, making it an appropriate technology for waste utilisation, particularly for the oil palm industry.


Assuntos
Arecaceae/química , Biomassa , Carvão Vegetal/análise , Incineração/métodos , Temperatura Alta
8.
RSC Adv ; 14(30): 21971-21981, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39006768

RESUMO

This study promotes the use of nanobiochar (NBC) as an environmentally friendly substitute to conventional fillers to improve various properties of biopolymers such as their mechanical strength, thermal stability and crystallization properties. TGA analysis showed a slight increase in onset thermal degradation temperature of the composites by up to 5 °C with the addition of 4 wt% NBC. Non-isothermal DSC analysis determined that the addition of NBC into PHBHHx increases the crystallization temperature and degree of crystallinity of PHBHHx while isothermal DSC analysis demonstrated higher crystallization rate in PHBHHx/NBC composited by up to 54%. PHBHHx incorporated with NBC also exhibited superior tensile strength and modulus versus neat PHBHHx. Increase in mechanical strength was further proven via DMA where PHBHHx/NBC composites maintained higher storage modulus at higher temperatures when compared to neat PHBHHx. PHBHHx/NBC also exhibited no cytotoxicity effect against HaCat cells. This study demonstrates the ability of biochar to act as both nucleating agents and reinforcing agents in biodegradable polymers such as PHBHHx, which could be suitable for packaging application.

9.
J Environ Manage ; 130: 375-85, 2013 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-24121591

RESUMO

Food waste and food processing wastes which are abundant in nature and rich in carbon content can be attractive renewable substrates for sustainable biohydrogen production due to wide economic prospects in industries. Many studies utilizing common food wastes such as dining hall or restaurant waste and wastes generated from food processing industries have shown good percentages of hydrogen in gas composition, production yield and rate. The carbon composition in food waste also plays a crucial role in determining high biohydrogen yield. Physicochemical factors such as pre-treatment to seed culture, pH, temperature (mesophilic/thermophilic) and etc. are also important to ensure the dominance of hydrogen-producing bacteria in dark fermentation. This review demonstrates the potential of food waste and food processing waste for biohydrogen production and provides a brief overview of several physicochemical factors that affect biohydrogen production in dark fermentation. The economic viability of biohydrogen production from food waste is also discussed.


Assuntos
Manipulação de Alimentos , Hidrogênio/química , Reciclagem , Gerenciamento de Resíduos/métodos , Energia Renovável
10.
Molecules ; 18(8): 9132-46, 2013 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-23903185

RESUMO

In this study, oil palm mesocarp fiber (OPMF) was treated with superheated steam (SHS) in order to modify its characteristics for biocomposite applications. Treatment was conducted at temperatures 190-230 °C for 1, 2 and 3 h. SHS-treated OPMF was evaluated for its chemical composition, thermal stability, morphology and crystallinity. OPMF treated at 230 °C exhibited lower hemicellulose content (9%) compared to the untreated OPMF (33%). Improved thermal stability of OPMF was found after the SHS treatment. Moreover, SEM and ICP analyses of SHS-treated OPMF showed that silica bodies were removed from OPMF after the SHS treatment. XRD results exhibited that OPMF crystallinity increased after SHS treatment, indicating tougher fiber properties. Hemicellulose removal makes the fiber surface more hydrophobic, whereby silica removal increases the surface roughness of the fiber. Overall, the results obtained herewith suggested that SHS is an effective treatment method for surface modification and subsequently improving the characteristics of the natural fiber. Most importantly, the use of novel, eco-friendly SHS may contribute to the green and sustainable treatment for surface modification of natural fiber.


Assuntos
Arecaceae/química , Temperatura Alta , Polissacarídeos/química , Vapor , Interações Hidrofóbicas e Hidrofílicas , Espectroscopia de Infravermelho com Transformada de Fourier
11.
Sci Rep ; 13(1): 14767, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37679379

RESUMO

Environmental impact assessment of glucose production from paddy milling waste, known as empty and partially filled paddy grain (EPFG) in Malaysia, was performed using life cycle assessment (LCA). Three scenarios were conducted based on system expansion of the process. The LCA was conducted using ReCiPe methodology at midpoint and endpoint levels. The results indicate that enzymatic hydrolysis phase is the hotspot in the conversion system due to enzyme production. In addition, the agriculture phase also contributed to negative impacts, especially towards climate change. An improved environmental load was observed in scenario 2 when all EPFG fractionation was utilised to replace fossil-based electricity. Sensitivity analysis showed an increase in glucose yield leads to reduced environmental impact. Thus, the LCA study suggests that the conversion process of EPFG could further benefit and improve the paddy industry waste management with low impact contribution to the environment compared to other feedstock used for glucose production.


Assuntos
Oryza , Agricultura , Fracionamento Químico , Mudança Climática , Grão Comestível , Glucose
12.
J Biomed Biotechnol ; 2012: 125865, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23133311

RESUMO

Factors influencing poly(3-hydroxybutyrate) P(3HB) production by Cupriavidus necator CCUG52238(T) utilizing oil palm frond (OPF) juice were clarified in this study. Effects of initial medium pH, agitation speed, and ammonium sulfate (NH(4))(2)SO(4) concentration on the production of P(3HB) were investigated in shake flasks experiments using OPF juice as the sole carbon source. The highest P(3HB) content was recorded at pH 7.0, agitation speed of 220 rpm, and (NH(4))(2)SO(4) concentration at 0.5 g/L. By culturing the wild-type strain of C. necator under the aforementioned conditions, the cell dry weight (CDW) and P(3HB) content obtained were 9.31 ± 0.13 g/L and 45 ± 1.5 wt.%, respectively. This accounted for 40% increment of P(3HB) content compared to the nonoptimized condition. In the meanwhile, the effect of dissolved oxygen tension (DOT) on P(3HB) production was investigated in a 2-L bioreactor. Highest CDW (11.37 g/L) and P(3HB) content (44 wt.%) were achieved when DOT level was set at 30%. P(3HB) produced from OPF juice had a tensile strength of 40 MPa and elongation at break of 8% demonstrated that P(3HB) produced from renewable and cheap carbon source is comparable to those produced from commercial substrate.


Assuntos
Cupriavidus necator/metabolismo , Hidroxibutiratos/metabolismo , Extratos Vegetais/metabolismo , Folhas de Planta/metabolismo , Óleos de Plantas/metabolismo , Poliésteres/metabolismo , Sulfato de Amônio/farmacologia , Biomassa , Reatores Biológicos/microbiologia , Cupriavidus necator/efeitos dos fármacos , Cupriavidus necator/crescimento & desenvolvimento , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Fenômenos Mecânicos/efeitos dos fármacos , Oxigênio/farmacologia , Óleo de Palmeira , Solubilidade , Temperatura , Fatores de Tempo
13.
Biotechnol Lett ; 34(2): 253-9, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22038551

RESUMO

A new halogen-free and environmental-friendly method using water and ethanol is developed as an alternative for the recovery of polyhydroxyalkanoates (PHA) from recombinant Cupriavidus necator in comparison to the established chloroform extraction method. After optimisation, our results showed that the halogen-free method produced a PHA with 81% purity and 96% recovery yield, in comparison to the chloroform extraction system which resulted in a highly pure PHA with 95% yield. Although the purity of the PHA using the new method is lower, the molecular weight of the extracted PHA is not compromised. This new method can be further developed as an alternative and more environmental-friendly method for industrial application.


Assuntos
Biotecnologia/métodos , Cupriavidus necator/genética , Cupriavidus necator/metabolismo , Poli-Hidroxialcanoatos/isolamento & purificação , Poli-Hidroxialcanoatos/metabolismo , Fracionamento Químico/métodos , Etanol/química , Organismos Geneticamente Modificados , Água/química
14.
Braz J Microbiol ; 43(2): 506-16, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24031858

RESUMO

Bioconverting glycerol into various valuable products is one of glycerol's promising applications due to its high availability at low cost and the existence of many glycerol-utilizing microorganisms. Bioethanol and biohydrogen, which are types of renewable fuels, are two examples of bioconverted products. The objectives of this study were to evaluate ethanol production from different media by local microorganism isolates and compare the ethanol fermentation profile of the selected strains to use of glucose or glycerol as sole carbon sources. The ethanol fermentations by six isolates were evaluated after a preliminary screening process. Strain named SS1 produced the highest ethanol yield of 1.0 mol: 1.0 mol glycerol and was identified as Escherichia coli SS1 Also, this isolated strain showed a higher affinity to glycerol than glucose for bioethanol production.

15.
J Biosci Bioeng ; 133(5): 414-424, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35151536

RESUMO

Palm oil is a representative and important biomass, not only as the most edible vegetable oil consumed worldwide, but also as a material for chemicals and biofuels. Despite the potential sustainability of the palm oil industry, it has conventionally emitted excess greenhouse gases, waste materials, and wastewater, brought land use change, thus affecting the natural environment. Therefore, the successful development of a sustainable palm oil industry is a touchstone for promoting the bioeconomy. Here, we first review the concept of the bioeconomy and the positive and negative aspects of the palm oil industry. Then, we consider solutions for introducing a green economy into the palm oil industry, such that it may coexist with biodiversity and environmental conservation toward the Sustainable Development Goals.


Assuntos
Biodiversidade , Conservação de Recursos Energéticos , Biocombustíveis , Biomassa , Conservação dos Recursos Naturais , Óleo de Palmeira
16.
Sci Rep ; 12(1): 5930, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35396465

RESUMO

Microbial degradation of organic matters is crucial during the composting process. In this study, the enhancement of the composting of rice straw and chicken manure with biochar was evaluated by investigating the indigenous cellulolytic bacterial community structure during the composting process. Compared with control treatment, composting with biochar recorded higher temperature (74 °C), longer thermophilic phase (> 50 °C for 18 days) and reduced carbon (19%) with considerable micro- and macronutrients content. The bacterial community succession showed that composting with biochar was dominated by the cellulolytic Thermobifida and Nocardiopsis genera, which play an important role in lignocellulose degradation. Twenty-three cellulolytic bacterial strains were successfully isolated at different phases of the composting with biochar. The 16S rRNA gene sequencing similarity showed that they were related to Bacillus licheniformis, Bacillus subtilis, Bacillus aerius, and Bacillus haynesii, which were known as cellulolytic bacteria and generally involved in lignocellulose degradation. Of these isolated bacteria, Bacillus licheniformis, a facultative anaerobe, was the major bacterial strain isolated and demonstrated higher cellulase activities. The increase in temperature and reduction of carbon during the composting with biochar in this study can thus be attributed to the existence of these cellulolytic bacteria identified.


Assuntos
Compostagem , Oryza , Anaerobiose , Animais , Bactérias/genética , Carbono , Carvão Vegetal , Galinhas/genética , Esterco/microbiologia , Oryza/genética , RNA Ribossômico 16S/genética , Solo
17.
Nanomaterials (Basel) ; 12(18)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36145039

RESUMO

The current production method of nanobiochar (NBC), an emerging, environmentally friendly nanocarbon material, is tedious and lengthy. Therefore, in this study we aimed to improve the productivity of NBC via high-energy ball milling by manipulating the grinding media and processing time. The particle size distribution of the resulting NBC measured using dynamic light scattering showed that grinding media with steel balls of different sizes were more effective at producing NBC than small uniform steel balls, which failed to produce NBC even after 90 min of milling. Average NBC particles of around 95 nm were achieved after only 30 min of ball milling, and the size was further reduced to about 30 nm when the milling was prolonged to 150 min. Further prolonging the milling duration led to agglomeration, which increased the size of the biochar nanoparticles. The thermogravimetric analysis (TGA) data showed that the duration of milling and particle size did not cause noticeable differences in the thermal stability of the NBC. Based on the FTIR analysis, the chemical structure of the NBC was not affected by the ball milling. The results showed that 60 min of high-energy ball milling is sufficient to produce NBC particles of 75 nm, with a large surface area and high thermal stability. This could prove beneficial in a myriad of applications, ranging from agriculture to composite fabrication.

18.
Membranes (Basel) ; 12(10)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36295672

RESUMO

To meet the need for food products to be safe and fresh, smart food packaging that can monitor and give information about the quality of packaged food has been developed. In this study, pH-sensitive films with sago starch and various anthocyanin concentrations of Brassica oleracea also known as red cabbage anthocyanin (RCA) at 8, 10, 12, and 14% (w/v) were manufactured using the solvent casting process. Investigation of the physicochemical, mechanical, thermal, and morphological characteristics of the films was performed and analysed. The response of these materials against pH changes was evaluated with buffers of different pH. When the films were exposed to a series of pH buffers (pH 3, 5, 9, 11, and 13), the RCA-associated films displayed a spectacular colour response. In addition, the ability of the starch matrix to overcome the leaching and release of anthocyanins was investigated. Higher concentrations of RCA can maintain the colour difference of films after being immersed in a series of buffer solutions ranging from acidic to basic conditions. Other than that, incorporating RCA extracts into the starch formulation increased the thickness whereas the water content, swelling degree, tensile strength, and elongation at break decreased as compared to films without RCA. The immobilisation of anthocyanin into the film was confirmed by the FTIR measurements. The surface patterns of films were heterogeneous and irregular due to the presence of RCA extract aggregates, which increased as the extract concentration enhanced. However, this would not affect the properties of films. An increase in thermal stability was noted for the anthocyanin-containing films at the final stage of degradation in TGA analysis. It is concluded that RCA and sago starch formulation has great potential to be explored for food packaging purposes.

19.
RSC Adv ; 12(22): 13938-13949, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35558839

RESUMO

Biochar is conventionally and widely used for soil amendment or as an adsorbent for water treatment. Nevertheless, the need for transition to renewable materials has resulted in an expansion of biochar for use as a filler for polymer composites. The aim is to enhance the physical, chemical, mechanical and rheological properties of the polymer composite. The reinforcement of biochar into a polymer matrix however is still new, and limited reports are focusing on the effects of biochar towards polymer composite properties. Hence, this review highlights the unique properties of biochar and its effect on the crystallization, thermal, flammability, electrical conductivity, and mechanical properties of polymer composites. This review does not solely summarize recent studies on biochar-polymer-based composites, but also offers insights into a new direction of biochar as a renewable and superior polymer filler in the future.

20.
Waste Manag Res ; 29(6): 602-11, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21447612

RESUMO

Nitrification of mature sanitary landfill leachate with high-strength of N-NH(4) + (1080-2350 mg L(-1)) was performed in a 10 L continuous nitrification activated sludge reactor. The nitrification system was acclimatized with synthetic leachate during feed batch operation to avoid substrate inhibition before being fed with actual mature leachate. Successful nitrification was achieved with an approximately complete ammonium removal (99%) and 96% of N-NH(4) + conversion to N-NO(-) (3) . The maximum volumetric and specific nitrification rates obtained were 2.56 kg N-NH(4) (+) m(-3) day(-1) and 0.23 g N-NH(4) ( +) g(-1) volatile suspended solid (VSS) day(-1), respectively, at hydraulic retention time (HRT) of 12.7 h and solid retention time of 50 days. Incomplete nitrification was encountered when operating at a higher nitrogen loading rate of 3.14 kg N-NH(4) (+) m(-3) day(-1). The substrate overloading and nitrifiers competition with heterotrophs were believed to trigger the incomplete nitrification. Fluorescence in situ hybridization (FISH) results supported the syntrophic association between the ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria. FISH results also revealed the heterotrophs as the dominant and disintegration of some AOB cell aggregates into single cells which further supported the incomplete nitrification phenomenon.


Assuntos
Bactérias/isolamento & purificação , Compostos de Amônio Quaternário/metabolismo , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Bactérias/classificação , Biodiversidade , Hibridização in Situ Fluorescente , Malásia , Nitrificação , Microbiologia do Solo , Eliminação de Resíduos Líquidos/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA