Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 533, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38862876

RESUMO

Dragon fruit (Selenicereus undatus), known for its captivating appearance and remarkable nutritional profile, has garnered considerable attention in recent years. Despite its popularity, there's a dearth of research on optimal conditions for seed germination and early growth stages such as seedling shoot length, which are crucial for optimal crop yield. This study aims to bridge this gap by evaluating various growing media's performance on dragon fruit germination and early growth stages. Dragon fruit seeds were obtained from local markets in Pakistan and evaluated in five different growing media: cocopeat, peat moss, sand, vermiculite, and compost. Germination parameters were observed for 45 days, including seed germination percentage, mean germination time, and mean daily germination percentage, among others while early growth was monitored for 240 days. Statistical analysis was conducted using ANOVA and Tukey's HSD test. Significant differences were found among the growing media regarding germination percentage, mean germination time, and mean daily germination. Vermiculite exhibited the highest germination rate (93.33%), while compost showed the least (70%). Peat moss and sand media facilitated rapid germination, while compost showed slower rates. Stem length was significantly influenced by the growth media, with compost supporting the longest stems. Vermiculite emerged as the most effective medium for dragon fruit seed germination, while compost showed slower but steady growth. These findings provide valuable insights for optimizing dragon fruit cultivation, aiding commercial growers and enthusiasts in achieving higher yields and quality. Further research could explore additional factors influencing dragon fruit growth and development.


Assuntos
Meios de Cultura , Frutas , Germinação , Frutas/crescimento & desenvolvimento , Frutas/fisiologia , Sementes/crescimento & desenvolvimento , Sementes/fisiologia , Plântula/crescimento & desenvolvimento , Cactaceae
2.
Ecotoxicol Environ Saf ; 254: 114731, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36905849

RESUMO

Microbes play a crucial role in maintaining health by aiding in digestion, regulating the immune system, producing essential vitamins, and preventing the colonization of harmful bacteria. The stability of the microbiota is, therefore, necessary for overall well-being. However, several environmental factors can negatively affect the microbiota, including exposure to industrial waste, i.e., chemicals, heavy metals, and other pollutants. Over the past few decades, industries have grown significantly, but the wastewater from those industries has seriously harmed the environment and the health of living beings both locally and globally. The current study investigated the effects of salt-contaminated water exposure on gut microbiota in chickens. According to our findings, amplicon sequencing showed 453 OTUs across control and salt-contaminated water exposure groups. Proteobacteria, Firmicutes, and Actinobacteriota were the most dominant phyla in the chickens regardless of treatment. However, exposure to salt-contaminated water resulted in a remarkable decline in gut microbial diversity. While, the beta diversity revealed substantial differences in major gut microbiota components. Moroever, microbial taxonomic investigation indicated that the proportions of one bacterial phylum and nineteen bacterial genera significantly decreased. Also, the levels of one bacterial phylum and thirty three bacterial genera markedly increased under salt-contaminated water exposure, which indicates a disruption in gut microbial homeostasis. Hence the current study provides a basis to explore the effects of salt-contaminated water exposure on the health of vertebrate species.


Assuntos
Microbioma Gastrointestinal , Animais , Galinhas/microbiologia , Disbiose , Bactérias/genética , Cloreto de Sódio , Cloreto de Sódio na Dieta , Água , RNA Ribossômico 16S
3.
J Insect Sci ; 16(1)2016.
Artigo em Inglês | MEDLINE | ID: mdl-27638958

RESUMO

Three standard foodstuff plastic packaging namely polyethylene (PE), polypropylene (PP), and polyvinylchloride (PVC) were evaluated for management of lesser grain borer Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae) and red flour beetle Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). Resistance parameters in packaging were recorded as punctures, holes, penetrations, sealing defects, and invasions with two thicknesses and tested for two lengths of time. Damages like punctures, holes and penetrations by both insects were more in PE packaging however R. dominica made more penetrations in PP than in PE. For both insects sealing defects and invasions were predominant in PVC than in others. Thickness did not affect significantly damage types but significantly more holes and penetrations by R. dominica were in less thickness. Punctures and holes by R. dominica were more after less time period but other damages in packaging were more after more time period. However for T. castaneum all sorts of damages were seen more after more time period. Overall categorization between two insects showed R. dominica made more penetrations and T. castaneum made more invasions compared with their counterparts. Pictures were taken under camera fitted microscope to magnify punctures and holes in different packaging and thicknesses. Insect mortality due to phosphine was more in PP and PE packaging and least in PVC packaging and thickness effect was marginal. T. castaneum mortality was significantly more after 48 h than after 24 h. Damages extent in packaging and fumigation results showed PP to be the best of three packaging materials to manage these insects.


Assuntos
Besouros , Embalagem de Alimentos/métodos , Fumigação , Controle de Insetos/métodos , Inseticidas/farmacologia , Fosfinas/farmacologia , Animais , Polietileno/análise , Polipropilenos/análise , Cloreto de Polivinila/análise , Tribolium
4.
PeerJ ; 12: e16782, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38435990

RESUMO

Ants belonging to the Monomorium indicum (Formicidae: Hymenoptera) species are ubiquitous insects that are commonly associated with household settings in Pakistan. Packaged foodstuffs are easily destroyed by household ants when packaging is made with materials that have a high susceptibility. This study evaluated the susceptibility of three common flexible plastic packaging materials namely: opaque polyethylene, transparent polyethylene and polypropylene, which were each tested at thicknesses of 0.02 mm for their susceptibility against M. indicum. Except opaque polyethylene which is only available at 0.02 mm thickness, both transparent polyethylene and polypropylene were tested at higher thickness of 0.04 mm and 0.06 mm also against M. indicum. In order to simulate household settings, experiments were conducted at the faculty building of the agriculture and environment department of The Islamia University of Bahawalpur, Pakistan during summer vacations when the building was quiet. Different corners were selected near water sources for maximum exposure to the largest number of ants. Experimental cages used for the experiment were built with wood and 2 mm iron gauze to allow only ants to enter the cages. Daily activity of ants was used as an infestation source in cages. Experiments were run over three time spans of fifteen days each from June 20th 2022 to August 15th 2022. Results showed all packaging materials were susceptible against M. indicum at the 0.02 mm thickness level. Polypropylene was susceptible at 0.04 mm thickness but resistant to ants at 0.06 mm thickness, whereas polyethylene was still susceptible to ants at the higher thickness of 0.06 mm. Correlation of packaging damage with weather factors showed that temperature had a positive relationship, while relative humidity had a negative association with M. indicum attack. Overall correlation of packaging damage with packaging thickness showed packaging thickness was negatively associated with packaging damage from the ants. Because major cutting role is performed by the mandibles, we studied mandibles of ants and three frequent pests of packaged foodstuff namely Rhyzopertha dominica, Tribolium castaneum and Trogoderma granarium. The results showed that ants had the largest mandible and frontal mandibular tooth lengths compared with the mandibles and frontal teeth of the common stored product pests, indicating M. indicum household ants have a higher pest status for packaged foodstuffs compared to common stored product pests. Although the thickness of the flexible plastic packaging was a major factor against household ants, the study results recommend the use of polypropylene with a thickness of at least 0.06 mm as foodstuff packaging against household ants compared with polyethylene packaging, which was found to be susceptible to ants even at 0.06 mm thickness.


Assuntos
Formigas , Besouros , Animais , Polipropilenos , Polietileno
5.
Microsc Res Tech ; 87(9): 1999-2012, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38623764

RESUMO

Green-synthesized metal oxide nanoparticles have garnered considerable attention due to their simple, sustainable, and eco-friendly attributes, coupled with their diverse applications in biomedicine and environmental context. The current study shows a sustainable approach for synthesizing molybdenum oxide nanoparticles (MoONPs) utilizing an extract from Anabaena sp. A-1. This novel approach marks a significant milestone as various spectral approaches were employed for characterization of the green-synthesized MoONPs. Ultraviolet-visible (UV-Vis) spectroscopic analysis revealed a surface plasmon resonance (SPR) peak of MoONPs at 538 nm. Fourier transform infrared (FTIR) spectral analysis facilitated the identification of functional groups responsible for both the stability and production of MoONPs. Scanning electron microscopy (SEM) was utilized revealing a rod shape morphology of the MoONPs. X-ray diffraction (XRD) analysis yielded a calculated crystal size of 31 nm, indicating the crystalline nature of MoONPs. Subsequently, biological assays were employed to ascertain the potential of the bioengineered MoONPs. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay was used to quantify free radical scavenging activity, revealing an antioxidant capacity of 68.1% at 200 µg/mL. To evaluate antibacterial and antifungal efficacy, the disc diffusion method was employed across varying concentrations of MoONPs (6.25, 12.5, 25, 50, 100, 150, 200 µg/mL). Quantification of cytotoxicity was performed via a brine shrimp assay, yielding an IC50 value of 552.3 µg/mL, a metric of moderate cytotoxicity. To assess the biocompatibility of MoONPs, an antihemolytic assay was conducted, confirming their safety profile. Additionally, MoONPs exhibited non-toxic attributes in an insecticidal assay. Notably, in anti-inflammatory assay MoONPs showed an inactive nature towards the reactive oxygen species. In conclusion, these findings highlight the potential versatility of MoONPs in various biological applications, extending beyond their recognized anti-inflammatory and insecticidal properties. RESEARCH HIGHLIGHTS: This study marks an advancement in nanotechnology, exploring ways for MoONPs fabrication, representing a unique and unexplored research domain. Green-synthesized MoONPs using Anabaena sp. A-1 extract offers a sustainable and eco-friendly approach. Characterized by UV-Vis, FTIR, SEM, and XRD, MoONPs demonstrate rod-shaped morphology and crystalline nature. Bioengineered MoONPs exhibit versatility in biological applications, demonstrating notable antioxidant, antibacterial and antifungal efficacy, moderate cytotoxicity, biocompatibility, and insecticidal properties, emphasizing their multifaceted utility. The research findings highlight the potential utilization of MoONPs across a spectrum of biological applications, thereby suggesting their promising role in the realm of biomedicine and environmental context.


Assuntos
Anabaena , Química Verde , Nanopartículas Metálicas , Molibdênio , Óxidos , Molibdênio/química , Molibdênio/farmacologia , Óxidos/química , Óxidos/farmacologia , Química Verde/métodos , Nanopartículas Metálicas/química , Anabaena/química , Antioxidantes/farmacologia , Antioxidantes/química , Animais , Antibacterianos/farmacologia , Antibacterianos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X , Artemia/efeitos dos fármacos , Microscopia Eletrônica de Varredura , Testes de Sensibilidade Microbiana
6.
PLoS One ; 19(5): e0303264, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38758743

RESUMO

Saffron, the "golden spice" derived from Crocus sativus L., is renowned for its richness in secondary metabolites such as crocin and safranal, contributing to its unique properties. Facing challenges like decreasing global production, optimizing cultivation techniques becomes imperative for enhanced yields. Although the impact of factors like planting density, planting depth, spacing, and corm size on saffron growth has been studied, the interaction between corm size and planting depth remains underexplored. This study systematically investigates the interactive effects of corm size and planting depth on saffron growth and yield, providing evidence-based guidelines for optimizing cultivation. A factorial experiment, employing a completely randomized design, was conducted to assess the influence of corm size (05-10g, 10.1-15g, 15.1-20g) and planting depth (10cm, 15cm, 20cm) on saffron yield. Uniform-sized corms were obtained, and a suitable soil mixture was prepared for cultivation. Morphological and agronomic parameters were measured, and statistical analyses were performed using ANOVA and Tukey's HSD test. The study revealed that planting depth significantly affected saffron emergence. The corms sown under 15cm depth showed 100% emergence regardless of corm size (either 05-10g, 10.1-15g, 15.1-20g) followed by 10cm depth corms. Corm dry weight exhibited a complex interaction, where larger corms benefited from deeper planting, while intermediate-sized corms thrived at shallower depths. Similar patterns were observed in shoot fresh weight and dry weight. Specifically, the largest corm size (t3, 15.1-20g) produced the greatest fresh-weight biomass at the deepest planting depth of 20cm (T3), while intermediate-sized corms (t2, 10.1-15g) were superior at the shallowest 10cm depth (T1). The total plant biomass demonstrated that larger corms excelled in deeper planting, while intermediate-sized corms were optimal at moderate depths. This research highlights the intricate interplay between corm size and planting depth in influencing saffron growth. Larger corms generally promote higher biomass, but the interaction with planting depth is crucial. Understanding these dynamics can aid farmers in tailoring cultivation practices for optimal saffron yields. The study emphasizes the need for a coordinated approach to corm selection and depth placement, providing valuable insights for sustainable saffron production and economic growth.


Assuntos
Crocus , Crocus/crescimento & desenvolvimento , Crocus/metabolismo , Agricultura/métodos , Solo/química , Biomassa , Carotenoides/metabolismo
7.
Sci Rep ; 13(1): 13666, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37607975

RESUMO

In order to develop integrated management approaches for Pectinophora gossypiella, basic studies are crucial. The two-sex life table is the most important tool for describing the fitness and population parameters of both sexes (male and female) of an insect, while the traditional life table only explains the female sex of an insect. However, no study has reported on the biology of P. gossypiella using two-sex life table tools. Therefore, this study explains the rearing dynamics of P. gossypiella on a cotton seed-based artificial diet and a natural diet (mature cotton bolls). According to the results, the oviposition period of P. gossypiella was recorded to be longer on the artificial diet (9.07 ± 0.24) compared to the natural diet (7.40 ± 0.11). The total fecundity of P. gossypiella was greater on the artificial diet (125.94 ± 3.06) in comparison to the natural diet (60.37 ± 1.10). The population parameters, including intrinsic rate of increase, finite rate of increase, gross reproductive rate, and net reproductive rate of P. gossypiella were highest on the artificial diet in comparison to the natural diet. This study concluded that the cotton seed-based artificial diet was most suitable for the rearing of P. gossypiella. In the future, P. gossypiella may be studied in depth in light of the findings in this study.


Assuntos
Dieta , Lepidópteros , Feminino , Masculino , Animais , Fertilidade , Gossypium , Tábuas de Vida
8.
Insects ; 13(10)2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36292901

RESUMO

Bag storage of wheat is common in Asian countries, and common types of such bags include jute bags, woven plastic bags, and hermetic plastic bags. In order to assess infestation by two serious pests, namely Rhyzopertha dominica (Coleoptera: Bostrichidae) and Trogoderma granarium (Coleoptera: Dermestidae) in these bags, two experiments were performed. In the first experiment, three popular wheat varieties, namely Akbar, Dilkash, and Bakhar star were filled in above-mentioned miniature-size bags which were then placed in jars with three replicates per bag type and variety. Forty insects (adults for R. dominica and larvae for T. granarium) were released in the center of the jars for a period of 30 d in two different setups for both species. Data were recorded twice: after 15 d and 30 d. Results showed insects entered the jute bags only (made invasions due to its loose fibers and openings). Inside the bags, R. dominica caused more weight loss and live insects in Dilkash and Akbar varieties, while T. granarium preferred Bakhar star and Dilkash compared with their third variety. In the second experiment, only two bags, namely woven plastic bags and hermetic plastic bags filled with one variety, were tested to check damage (penetrations because no openings are present in these bags as in jute bags) to the bags. Results showed both species created holes in woven plastic bags but not in hermetic plastic bags. These results showed hermetic plastic bags remained safe from external infestation compared with the other two bags. Sometimes if insects are already present in the grains inside the bags, fumigation is needed from outside to kill the pests inside. To evaluate this, all three bags were filled with a wheat variety and were also infested with both insect species and placed in a fumigation container with nine replicates per bag type. A phosphine tablet (3.0 g) wrapped in muslin cloth was placed in a container which was then sealed, and the fumigation-induced mortality after 24 h was recorded. Results showed mortality was >95% to 100% in woven and jute bags, respectively, while mortality in hermetic plastic bags remained very low (<3%). These results revealed the least fumigant gas permeation in hermetic plastic bags compared with jute and woven plastic bags. Results of all three experiments demand immediate alteration in creation of all three bags to curtail infestation from outside (jute and woven plastic bags) as well as to generate maximum fumigation efficacy when the source of infestation is with the grains (hermetic bags).

9.
J Econ Entomol ; 104(4): 1436-44, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21882714

RESUMO

We investigated the effects often constant temperatures (20.0, 22.5, 25.0, 27.5, 30.0, 32.5, 35.0, 37.5, 39.0, and 41.0 degrees C) on the development, survival, and reproduction of the psocid Liposcelis yunnaniensis Li & Li (Psocoptera: Liposcelididae). At 39.0 and 41.0 degrees C, none of individuals could develop successfully or reproduce. From 20 to 37.5 degrees C, the development period from egg to adult ranged from 64.3 d at 20 degrees C to 16.1 d at 35 degrees C. The lower developmental threshold for egg, nymph, and combined immature stages were estimated at 15.08, 15.13, and 14.77 degrees C, respectively. After emergence the females went through a preoviposition period that ranged from 18.5 d at 22.5 degrees C to 3.11 d at 35 degrees C, whereas it was 16.3 d at 20 degrees C. Liposcelis yunnaniensis produced most eggs at 35 degrees C and the fewest at 22.5 degrees C. The population reared at 35 degrees C had the highest intrinsic rate of increase, shorter mean generation time, and shortest population doubling time compared with other temperatures. According to Weibull frequency distribution, L. yunnaniensis reared at all the temperatures had type III survivorship curves (c < 1.0). Based on life-table parameter estimations, we suggest that optimum range of temperatures for this species is from 25 to 37.5 degrees C. These data give us useful information on population biology of L. yunnaniensis and can be used to better manage this species.


Assuntos
Insetos/crescimento & desenvolvimento , Temperatura , Animais , Feminino , Ninfa/crescimento & desenvolvimento , Oviposição , Óvulo/crescimento & desenvolvimento
10.
J Med Entomol ; 58(4): 1779-1787, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-33758935

RESUMO

Flonicamid is a chordotonal modulator and novel systemic insecticide that has been used frequently for controlling a broad range of insect pests. The risk of flonicamid resistance was assessed through laboratory selection and determining inheritance pattern and cross-resistance potential to five insecticides in house fly, Musca domestica L. Very low to high flonicamid resistance in M. domestica populations was found compared with the susceptible strain (SS). A flonicamid-selected (Flonica-RS) M. domestica strain developed 57.73-fold resistance to flonicamid screened for 20 generations compared with the SS. Overlapping 95% fiducial limits of LC50 of the F1 and F1ǂ, and dominance values (0.87 for F1 and 0.92 for F1ǂ) revealed an autosomal and incomplete dominant flonicamid resistance. The monogenic model of resistance inheritance suggested a polygenic flonicamid resistance. The Flonica-RS strain displayed negative cross-resistance between flonicamid and sulfoxaflor (0.10-fold) or clothianidin (0.50-fold), and very low cross-resistance between flonicamid and flubendiamide (4.71-fold), spinetoram (4.68-fold), or thiamethoxam (2.02-fold) in comparison with the field population. The estimated realized heritability (h2) value of flonicamid resistance was 0.02. With selection mortality 40-90%, the generations required for a 10-fold increase in LC50 of flonicamid were 94-258 at h2 (0.02) and slope (3.29). Flonicamid resistance was inherited as autosomal, incomplete dominant, and polygenic in the Flonica-RS. Negative or very low cross-resistance between flonicamid and sulfoxaflor, clothianidin, flubendiamide, spinetoram, and thiamethoxam means that these insecticides can be used as alternatives for controlling M. domestica. These data can be useful in devising the management for M. domestica.


Assuntos
Moscas Domésticas/genética , Padrões de Herança , Inseticidas , Niacinamida/análogos & derivados , Seleção Genética , Animais , Feminino , Resistência a Inseticidas/genética , Masculino , Medição de Risco
12.
Biosci. j. (Online) ; 34(2): 302-311, mar./apr. 2018. tab
Artigo em Inglês | LILACS | ID: biblio-966640

RESUMO

Micronutrients play a vital role in the growth and productivity of cotton crop. A study was carried out to access the exogenous application of micronutrients on growth and yield of cotton crop. The experiment was comprised of nine treatments as T0 (control), T1 (Fe chelated), T2 (B), T3 (Mo), T4 (CuSo4 + ZnSo4 + MnSo4), T5 (CuSo4 + ZnSo4 + MnSo4 + Fe chelated), T6 (CuSo4 + ZnSo4 + MnSo4 + B), T7 (CuSo4 + ZnSo4 + MnSo4 + Mo) and T8 (CuSo4 + ZnSo4 + MnSo4 + Fe chelated + B). Data on different growth attributes showed that there was significant positive increase with the application of micronutrients. Leaf area was increased after applying micronutrients at 99 days after sowing (DAS) and then a decreasing trend was observed. Chlorophyll contents were increased at 81 DAS and then decreased towards the final harvest. Similarly, different yield components showed that seed cotton yield were significantly increased with the application of Fe, B, Mo, Zn, Cu and Mn compared to control treatment. Earliness index, mean maturity date and production rate index were increased significantly after combined use of foliar spray of Zn, Cu, Mn and Mo.


Os micronutrientes desempenham um papel vital no crescimento e produtividade da cultura do algodão. Um estudo foi realizado para acessar a aplicação exógena de micronutrientes no crescimento e produção de cultura de algodão. O experimento foi composto de nove tratamentos como T0 (controle), T1 (Fe quelatado), T2 (B), T3 (Mo), T4 (CuSo4 + ZnSo4 + MnSo4), T5 (CuSo4 + ZnSo4 + MnSo4 + Fe quelatado) T6 (CuSo4 + ZnSo4 + MnSo4 + B), T7 (CuSo4 + ZnSo4 + MnSo4 + Mo) e T8 (CuSo4 + ZnSo4 + MnSo4 + Fe quelados + B). Dados sobre diferentes atributos de crescimento mostraram aumento significativo positivo com a aplicação de micronutrientes. A área foliar foi aumentada após aplicação de micronutrientes aos 99 dias após a semeadura (DAS), observando - se, então, uma tendência decrescente. Os teores de clorofila foram aumentados em 81 DAS e depois diminuíram para a colheita final. De forma semelhante, diferentes componentes de rendimento mostraram que o rendimento de algodão de sementes aumentou significativamente com a aplicação de Fe, B, Mo, Zn, Cu e Mn em comparação com o tratamento de controlo. O índice de precocidade, a data média de maturidade eo índice de taxa de produção aumentaram significativamente após o uso combinado de pulverização foliar de Zn, Cu, Mn e Mo.


Assuntos
Reguladores de Crescimento de Plantas , Produção Agrícola , Micronutrientes , Gossypium/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA