Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 49(4): 1976-82, 2010 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-20067239

RESUMO

A family of new mixed-ligand titanium guanidinate compounds was synthesized as potential atomic layer deposition precursors, and the surface chemistry on silica of a promising candidate (Cp(2)Ti[(N(i)Pr)(2)CN(H)(i)Pr]) was explored. Generally, these compounds have very good thermal stability with onsets of volatility between 127 and 168 degrees C, with melting points generally ranging from 147 to 165 degrees C. The reactivity of [(i)PrN(H)C(N(i)Pr)(2)]TiCp(2) was studied with high surface area silica between 180 and 330 degrees C. The surface reactivity was found to differ if the silica was preheated to 350 or 900 degrees C; this was attributed to the hydroxyl nucleation site density of the silica, which is known to vary with the temperature. The surface reaction products were characterized by solid-state NMR, and these agreed well with a calculated model. When the silica was pretreated to 350 degrees C, the precursor appeared to chemisorb primarily through the loss of a Cp ligand, while with a 900 degrees C pretreatment, the chemisorption occurred primarily through a loss of the guanidinate ligand. The adsorption enthalpies to silica were calculated for the different surface species.

2.
ACS Appl Mater Interfaces ; 7(35): 19857-62, 2015 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-26305370

RESUMO

Atomic layer deposition (ALD) of silicon nitride (SiNx) is deemed essential for a variety of applications in nanoelectronics, such as gate spacer layers in transistors. In this work an ALD process using bis(tert-butylamino)silane (BTBAS) and N2 plasma was developed and studied. The process exhibited a wide temperature window starting from room temperature up to 500 °C. The material properties and wet-etch rates were investigated as a function of plasma exposure time, plasma pressure, and substrate table temperature. Table temperatures of 300-500 °C yielded a high material quality and a composition close to Si3N4 was obtained at 500 °C (N/Si=1.4±0.1, mass density=2.9±0.1 g/cm3, refractive index=1.96±0.03). Low wet-etch rates of ∼1 nm/min were obtained for films deposited at table temperatures of 400 °C and higher, similar to that achieved in the literature using low-pressure chemical vapor deposition of SiNx at >700 °C. For novel applications requiring significantly lower temperatures, the temperature window from room temperature to 200 °C can be a solution, where relatively high material quality was obtained when operating at low plasma pressures or long plasma exposure times.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA