Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 34(35): 11665-72, 2014 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-25164662

RESUMO

When asked to maintain their gaze steady on a given location, humans continually perform microscopic eye movements, including fast gaze shifts known as microsaccades. It has long been speculated that these movements may contribute to the maintenance of fixation, but evidence has remained contradictory. We used a miniaturized version of saccadic adaptation, an experimental procedure by which motor control of saccades is modified through intrasaccadic displacements of the target. We found that the statistical distribution of microsaccade amplitudes changes after brief exposure to systematic shifts of the fixation point during microsaccade occurrence. Shifts in the same directions as microsaccades produce movements with larger amplitudes, whereas shifts against microsaccade directions result in smaller movements. Our findings show that microsaccades are precisely monitored during fixation and that their motor program is modified if the postsaccadic target position is not at the expected retinal location. These results demonstrate that saccadic adaptation occurs even when the stimulus is already close to the foveal center and precise execution of the movement may not be critical. They support the proposal that adaptation is necessary to maintain a consistent relationship between motor control and its visual consequences and that the representation of space is intrinsically multimodal, even during fixation.


Assuntos
Adaptação Fisiológica/fisiologia , Plasticidade Neuronal/fisiologia , Movimentos Sacádicos/fisiologia , Percepção Visual/fisiologia , Adulto , Feminino , Fixação Ocular/fisiologia , Humanos , Masculino , Estimulação Luminosa
2.
J Neurophysiol ; 108(10): 2819-26, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22933719

RESUMO

The saccadic amplitude of humans and monkeys can be adapted using intrasaccadic target steps in the McLaughlin paradigm. It is generally believed that, as a result of a purely retinal reference frame, after adaptation of a saccade of a certain amplitude and direction, saccades of the same amplitude and direction are all adapted to the same extent, independently from the initial eye position. However, recent studies in humans have put the pure retinal coding in doubt by revealing that the initial eye position has an effect on the transfer of adaptation to saccades of different starting points. Since humans and monkeys show some species differences in adaptation, we tested the eye position dependence in monkeys. Two trained Macaca fascicularis performed reactive rightward saccades from five equally horizontally distributed starting positions. All saccades were made to targets with the same retinotopic motor vector. In each session, the saccades that started at one particular initial eye position, the adaptation position, were adapted to shorter amplitude, and the adaptation of the saccades starting at the other four positions was measured. The results show that saccades that started at the other positions were less adapted than saccades that started at the adaptation position. With increasing distance between the starting position of the test saccade and the adaptation position, the amplitude change of the test saccades decreased with a Gaussian profile. We conclude that gain-decreasing saccadic adaptation in macaques is specific to the initial eye position at which the adaptation has been induced.


Assuntos
Adaptação Ocular , Fixação Ocular , Movimentos Sacádicos/fisiologia , Animais , Macaca , Distribuição Normal
3.
J Neurophysiol ; 106(5): 2536-45, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21795618

RESUMO

Saccades are used by the visual system to explore visual space with the high accuracy of the fovea. The visual error after the saccade is used to adapt the control of subsequent eye movements of the same amplitude and direction in order to keep saccades accurate. Saccadic adaptation is thus specific to saccade amplitude and direction. In the present study we show that saccadic adaptation is also specific to the initial position of the eye in the orbit. This is useful, because saccades are normally accompanied by head movements and the control of combined head and eye movements depends on eye position. Many parts of the saccadic system contain eye position information. Using the intrasaccadic target step paradigm, we adaptively reduced the amplitude of reactive saccades to a suddenly appearing target at a selective position of the eyes in the orbitae and tested the resulting amplitude changes for the same saccade vector at other starting positions. For central adaptation positions the saccade amplitude reduction transferred completely to eccentric starting positions. However, for adaptation at eccentric starting positions, there was a reduced transfer to saccades from central starting positions or from eccentric starting positions in the opposite hemifield. Thus eye position information modifies the transfer of saccadic amplitude changes in the adaptation of reactive saccades. A gain field mechanism may explain the eye position dependence found.


Assuntos
Adaptação Fisiológica/fisiologia , Fixação Ocular/fisiologia , Músculos Oculomotores/fisiologia , Movimentos Sacádicos/fisiologia , Adulto , Tronco Encefálico/citologia , Tronco Encefálico/fisiologia , Feminino , Fóvea Central/fisiologia , Humanos , Aprendizagem/fisiologia , Masculino , Vias Neurais/citologia , Vias Neurais/fisiologia , Estimulação Luminosa/métodos , Células de Purkinje/citologia , Células de Purkinje/fisiologia , Colículos Superiores/citologia , Colículos Superiores/fisiologia , Campos Visuais/fisiologia
4.
J Neurophysiol ; 103(6): 3302-10, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20393067

RESUMO

The saccadic system is a prime example of motor control without continuous visual feedback. These systems suffer from a strong vulnerability against disturbances. The mechanism of saccadic adaptation allows adjustment of saccades to alterations arising not only from anatomical changes but also from external changes. The weighting of errors according to their reliability provides a strong benefit for an optimized control system. Thus the consistency of visual error should influence the characteristics of adaptation. In the typical adaptation paradigm a visual error is introduced by stepping the target during the saccade by a given amount. In this paradigm, the retinal error varies with the accuracy of the saccade and the step size. To study the influence of error consistency we use a variant of the adaptation paradigm which allows to specify a constant error size. Intrasaccadic target step sizes were calculated with respect to the predicted landing position of each individual saccade. The consistency of the visual error was varied by introducing different levels of noise to the intrasaccadic target step. Different mean intrasaccadic target step sizes were examined: positive target step, negative target step, and a condition in which the mean of the error distribution was clamped to the fovea. In all three conditions saccadic adaptation was strongest when the error was consistent and became weaker as the error became more variable. These results show that saccadic adaptation takes not only the average error but also the consistency of the error into account.


Assuntos
Adaptação Fisiológica/fisiologia , Retroalimentação Sensorial/fisiologia , Movimentos Sacádicos/fisiologia , Percepção Visual/fisiologia , Adulto , Feminino , Humanos , Masculino , Estimulação Luminosa/métodos , Estatística como Assunto , Campos Visuais/fisiologia
5.
PLoS One ; 7(6): e39708, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22768109

RESUMO

Saccades are so called ballistic movements which are executed without online visual feedback. After each saccade the saccadic motor plan is modified in response to post-saccadic feedback with the mechanism of saccadic adaptation. The post-saccadic feedback is provided by the retinal position of the target after the saccade. If the target moves after the saccade, gaze may follow the moving target. In that case, the eyes are controlled by the pursuit system, a system that controls smooth eye movements. Although these two systems have in the past been considered as mostly independent, recent lines of research point towards many interactions between them. We were interested in the question if saccade amplitude adaptation is induced when the target moves smoothly after the saccade. Prior studies of saccadic adaptation have considered intra-saccadic target steps as learning signals. In the present study, the intra-saccadic target step of the McLaughlin paradigm of saccadic adaptation was replaced by target movement, and a post-saccadic pursuit of the target. We found that saccadic adaptation occurred in this situation, a further indication of an interaction of the saccadic system and the pursuit system with the aim of optimized eye movements.


Assuntos
Adaptação Ocular/fisiologia , Movimento/fisiologia , Movimentos Sacádicos/fisiologia , Adulto , Feminino , Humanos , Masculino , Estimulação Luminosa , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA