Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Pharm Res ; 34(12): 2910-2921, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29067591

RESUMO

PURPOSE: To investigate the effect of nanoparticulate impurities (NPIs) isolated from pharmaceutical-grade sucrose, on the stability of monoclonal antibodies (mAbs). METHODS: NPIs were purified from pharmaceutical-grade sucrose and spiked into trastuzumab, rituximab, infliximab, and cetuximab formulations. The stability of the mAbs as a function of storage time, temperature, and NPI concentration was assessed by visual inspection, flow-imaging microscopy, nanoparticle tracking analysis, size-exclusion chromatography, capillary isoelectric focusing, and intrinsic differential scanning fluorimetry. RESULTS: NPIs negatively affected the stability of all mAbs, albeit it to different extents. After spiking with NPIs, trastuzumab formulations showed high numbers of µm-sized particles and turbidity, rituximab and cetuximab formulations contained high numbers of nm-sized particles, while infliximab formed nm- and µm-sized particles, and showed turbidity. Low-molecular-weight species were observed for rituximab and infliximab, whereas high-molecular-weight species were detected for cetuximab. Whereas the stability of trastuzumab and infliximab formulations was affected directly after spiking NPIs, degradation of rituximab and cetuximab was observed only after 14 weeks at elevated temperatures. Moreover, the stability of rituximab and infliximab was affected by NPI concentrations that are potentially present in final drug products. CONCLUSIONS: The presence of sucrose-derived NPIs in (bio-)pharmaceutical formulations may pose a threat to the stability of mAbs.


Assuntos
Anticorpos Monoclonais/química , Excipientes/química , Nanopartículas/química , Sacarose/química , Composição de Medicamentos , Estabilidade de Medicamentos , Estabilidade Proteica , Proteólise
2.
Pharm Res ; 34(12): 2817-2828, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29110285

RESUMO

PURPOSE: To physicochemically characterize and compare monoclonal antibody (mAb) solutions containing aggregates generated via metal catalyzed oxidation (MCO). METHODS: Two monoclonal IgG2s (mAb1 and mAb2) and one monoclonal IgG1 (rituximab) were exposed to MCO with the copper/ascorbic acid oxidative system, by using several different methods. The products obtained were characterized by complementary techniques for aggregate and particle analysis (from oligomers to micron sized species), and mass spectrometry methods to determine the residual copper content and chemical modifications of the proteins. RESULTS: The particle size distribution and the morphology of the protein aggregates generated were similar for all mAbs, independent of the MCO method used. There were differences in both residual copper content and in chemical modification of specific residues, which appear to be dependent on both the protein sequence and the protocol used. All products showed a significant increase in the levels of oxidized His, Trp, and Met residues, with differences in extent of modification and specific amino acid residues modified. CONCLUSION: The extent of total oxidation and the amino acid residues with the greatest oxidation rate depend on a combination of the MCO method used and the protein sequence.


Assuntos
Anticorpos Monoclonais/química , Antineoplásicos Imunológicos/química , Cobre/química , Imunoglobulina G/química , Agregados Proteicos , Rituximab/química , Ácido Ascórbico/química , Ácido Ascórbico/farmacologia , Catálise , Humanos , Modelos Moleculares , Oxirredução/efeitos dos fármacos , Agregados Proteicos/efeitos dos fármacos , Soluções
3.
Pharm Res ; 32(7): 2419-27, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25630820

RESUMO

PURPOSE: In the present study we investigated the root-cause of an interference signal (100-200 nm) of sugar-containing solutions in dynamic light scattering (DLS) and nanoparticle tracking analysis (NTA) and its consequences for the analysis of particles in biopharmaceutical drug products. METHODS: Different sugars as well as sucrose of various purity grades, suppliers and lots were analyzed by DLS and NTA before and (only for sucrose) after treatment by ultrafiltration and diafiltration. Furthermore, Fourier transform infrared (FTIR) microscopy, scanning electron microscopy coupled energy-dispersive X-ray spectroscopy (SEM-EDX), and fluorescence spectroscopy were employed. RESULTS: The intensity of the interference signal differed between sugar types, sucrose of various purity grades, suppliers, and batches of the same supplier. The interference signal could be successfully eliminated from a sucrose solution by ultrafiltration (0.02 µm pore size). Nanoparticles, apparently composed of dextrans, ash components and aromatic colorants that were not completely removed during the sugar refinement process, were found responsible for the interference and were successfully purified from sucrose solutions. CONCLUSIONS: The interference signal of sugar-containing solutions in DLS and NTA is due to the presence of nanoparticulate impurities. The nanoparticles present in sucrose were identified as agglomerates of various impurities originating from raw materials.


Assuntos
Biofarmácia/métodos , Carboidratos/química , Contaminação de Medicamentos , Difusão Dinâmica da Luz , Muramidase/análise , Nanopartículas/análise , Biofarmácia/normas , Química Farmacêutica , Contaminação de Medicamentos/prevenção & controle , Microscopia Eletrônica de Varredura , Espectrometria de Fluorescência , Espectroscopia de Infravermelho com Transformada de Fourier , Ultrafiltração
4.
Pharm Res ; 32(4): 1383-94, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25319104

RESUMO

PURPOSE: Determine the effect of minute quantities of sub-visible aggregates on the in vitro immunogenicity of clinically relevant protein therapeutics. METHODS: Monoclonal chimeric (rituximab) and humanized (trastuzumab) antibodies were subjected to fine-tuned stress conditions to achieve low levels (<3% of total protein) of sub-visible aggregates. The effect of stimulating human dendritic cells (DC) and CD4(+) T cells with the aggregates was measured in vitro using cytokine secretion, proliferation and confocal microscopy. RESULTS: Due to its intrinsic high clinical immunogenicity, aggregation of rituximab had minimal effects on DC activation and T cell responses compared to monomeric rituximab. However, in the case of trastuzumab (low clinical immunogenicity) small quantities of aggregates led to potent CD4(+) T cell proliferation as a result of strong cytokine and co-stimulatory signals derived from DC. Consistent with this, confocal studies showed that stir-stressed rituximab was rapidly internalised and associated with late endosomes of DC. CONCLUSIONS: These data link minute amounts of aggregates with activation of the innate immune response, involving DC, resulting in T cell activation. Thus, when protein therapeutics with little or no clinical immunogenicity, such as trastuzumab, contain minute amounts of sub-visible aggregates, they are associated with significantly increased potential risk of clinical immunogenicity.


Assuntos
Linfócitos T CD4-Positivos/efeitos dos fármacos , Células Dendríticas/efeitos dos fármacos , Ativação Linfocitária/efeitos dos fármacos , Agregados Proteicos/imunologia , Rituximab/imunologia , Trastuzumab/imunologia , Linfócitos T CD4-Positivos/imunologia , Células Cultivadas , Citocinas/imunologia , Células Dendríticas/imunologia , Estabilidade de Medicamentos , Humanos , Imunidade Inata/efeitos dos fármacos
5.
Eur J Pharm Biopharm ; 200: 114340, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38797222

RESUMO

Lentiviral vectors (LVVs) are used as a starting material to generate chimeric antigen receptor (CAR) T cells. Therefore, LVVs need to be carefully analyzed to ensure safety, quality, and potency of the final product. We evaluated orthogonal and complementary analytical techniques for their suitability to characterize particulate matter (impurities and LVVs) in pharmaceutical LVV materials at development stage derived from suspension and adherent manufacturing processes. Microfluidic resistive pulse sensing (MRPS) with additional manual data fitting enabled the assessment of mode diameters for particles in the expected LVV size range in material from adherent production. LVV material from a suspension process, however, contained substantial amounts of particulate impurities which blocked MRPS cartridges. Sedimentation-velocity analytical ultracentrifugation (SV-AUC) resolved the LVV peak in material from adherent production well, whereas in more polydisperse samples from suspension production, presence of particulate impurities masked a potential signal assignable to LVVs. In interferometric light microscopy (ILM) and nanoparticle tracking analysis (NTA), lower size detection limits close to âˆ¼ 70 nm resulted in an apparent peak in particle size distributions at the expected size for LVVs emphasizing the need to interpret these data with care. Interpretation of data from dynamic light scattering (DLS) was limited by insufficient size resolution and sample polydispersity. In conclusion, the analysis of LVV products manufactured at pharmaceutical scale with current state-of-the-art physical (nano)particle characterization techniques was challenging due to the presence of particulate impurities of heterogeneous size. Among the evaluated techniques, MRPS and SV-AUC were most promising yielding acceptable results at least for material from adherent production.


Assuntos
Vetores Genéticos , Lentivirus , Nanopartículas , Tamanho da Partícula , Ultracentrifugação , Lentivirus/genética , Nanopartículas/química , Ultracentrifugação/métodos , Humanos , Receptores de Antígenos Quiméricos
6.
J Chromatogr A ; 1720: 464777, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38432108

RESUMO

The majority of commercially available monoclonal antibody (mAb) formulations are stabilized with one of three non-ionic surfactants: polysorbate 20 (PS20), polysorbate 80 (PS80), or poloxamer 188 (P188). All three surfactants are susceptible to degradation, which can result in functionality loss and subsequent protein aggregation or free fatty acid particle formation. Consequently, quantitative, and qualitative analysis of surfactants is an integral part of formulation development, stability, and batch release testing. Due to the heterogeneous nature of both polysorbates and poloxamer, online isolation of all the compounds from the protein and other excipients that may disturb the subsequent liquid chromatography with charged aerosol detection (LC-CAD) analysis poses a challenge. Herein, we present an analytical method employing LC-CAD, utilizing a combination of anion and cation exchange columns to completely remove proteins online before infusing the isolated surfactant onto a reversed-phase column. The method allows high throughput analysis of polysorbates within 8 minutes and poloxamer 188 within 12 minutes, providing a separation of the surfactant species of polysorbates (unesterified species, lower esters, and higher esters) and poloxamer 188 (early eluters and main species). Accuracy and precision assessed according to the International Council for harmonisation (ICH) guideline were 96 - 109 % and ≤1 % relative standard deviation respectively for all three surfactants in samples containing up to 110 mg/mL mAb. Subsequently, the method was effectively applied to quantify polysorbate 20 and polysorbate 80 in nine commercial drug products with mAb concentration of up to 180 mg/mL.


Assuntos
Poloxâmero , Polissorbatos , Polissorbatos/química , Poloxâmero/análise , Anticorpos Monoclonais/química , Tensoativos/química , Cromatografia Líquida , Aerossóis/química
7.
J Pharm Sci ; 113(4): 891-899, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37926233

RESUMO

During biopharmaceutical development, particle monitoring and characterization are crucial. Notably, particles can be impurities considered as critical quality attribute, or active pharmaceutical ingredient (e.g., viral vectors) or drug delivery system (e.g., lipid nanoparticles) itself. Three-dimensional homodyne light detection (3D-HLD) is a novel technique that can characterize particles in the ∼0.2 µm to 2.0 µm size range. We evaluated 3D-HLD for the analysis of high concentration protein formulations (up to 200 mg/mL), where formulation refractive index and background noise became limiting factors with increasing protein concentration. Sample viscosity however did not impact 3D-HLD results, in contrast to comparative analyses with NTA and MRPS. We also applied 3D-HLD in high-throughput screenings at high protein concentration or of lipid nanoparticle and viral vector formulations, where impurities were analyzed in the presence of a small (<0.2 µm) particulate active pharmaceutical ingredient. 3D-HLD turned out to be in good agreement with or a good complement to other state-of-the-art particle characterization techniques, including BMI, MRPS, and DLS. The main application of 3D-HLD is high-throughput particle analysis at low sample volume. Follow-up investigation of the optimized particle sizing approach and of detection settings could further improve the understanding of the method and potentially increase ease of operation.


Assuntos
Produtos Biológicos , Nanopartículas , Princípios Ativos , Proteínas/análise , Nanopartículas/análise , Ensaios de Triagem em Larga Escala , Tamanho da Partícula
8.
Eur Biophys J ; 42(4): 267-79, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23233118

RESUMO

Our aim was to investigate the interaction of the cationic meso-tetrakis (4-N-methylpyridyl) porphyrin, a photosensitizer used for photodynamic therapy, in its free base form (TMPyP) and complexed with Zn(II) (ZnTMPyP), with large unilamellar vesicles (LUVs), as a model for the gram-negative bacterial cell wall. Mixtures of the zwitterionic 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and anionic 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (POPG) phospholipids, at different molar percentages, were used as LUVs. A significant increase of porphyrin affinity at higher POPG molar concentrations was observed from the binding constant values, K b, estimated by optical absorption and steady-state fluorescence. Besides, as demonstrated by time-resolved fluorescence, this affinity increase is also followed by a higher fraction of vesicle-bound porphyrin in the LUVs. Moreover, based on the K b values, we have observed a higher affinity of the ZnTMPyP to the POPG containing LUVs as compared to the TMPyP. Steady-state fluorescence quenching and zeta potential studies revealed that both porphyrins are possibly located at the LUVs Stern layer region. Therefore, the electrostatic attraction between the positively charged porphyrin peripheral groups and the negatively charged outer surface of the LUVs plays an important role in porphyrin association and localization. Our results have improved the understanding of the successful application of cationic porphyrins on the photo-inactivation of gram-negative bacteria. Since a higher accumulation of the ZnTMPyP in the bacterial cell wall would be expected, this porphyrin could be a more efficient therapeutic drug for this treatment.


Assuntos
Metaloporfirinas/metabolismo , Fosfolipídeos/metabolismo , Fármacos Fotossensibilizantes/metabolismo , Porfirinas/metabolismo , Lipossomas Unilamelares/metabolismo , Absorção , Espectrometria de Fluorescência
9.
Int J Pharm ; 643: 123285, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37532010

RESUMO

High-concentration protein formulations (HCPFs) represent a common strategy and freeze-drying can mitigate the stability challenges of HCPFs. In general, an in-depth characterization of the lyophilization process is essential to not impair the product quality by inappropriate process parameters. The aim of this study was to create a primary drying design space for lyophilized HCPFs by utilizing the heat flux sensor (HFS) integrated in a MicroFD with a minimum number of cycles and product vials. All the necessary data to obtain the design space were determined starting from only two lyophilization cycles, each holding 19 vials. The vial heat transfer coefficient (Kv) was determined by the HFS and compared to gravimetric values. The results indicate a consistant offset between the HFS and the gravimetry based values for annealed samples with higher protein content. This work highlights a possibility of integrating new technologies, the HFS and the MicroFD to generate a design space for lyophilization of HCPFs, which enables to implement a QbD approach at minimal material and time investment.


Assuntos
Temperatura Alta , Tecnologia Farmacêutica , Tecnologia Farmacêutica/métodos , Liofilização/métodos , Composição de Medicamentos/métodos , Dessecação/métodos , Proteínas , Temperatura
10.
Mol Ther Methods Clin Dev ; 31: 101162, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38094202

RESUMO

Recombinant adeno-associated viruses (rAAVs) are attractive therapeutic viral vectors for gene delivery. To ensure the efficacy and safety of rAAV-based therapies, comprehensive characterization of the adeno-associated virus (AAV) capsids is essential. Mass photometry (MP) provides the advantage of short analysis times, low sample consumption, and high accuracy of molecular mass determination. Despite having just recently emerged, MP has already been used to characterize AAV genome content and quantify filled/empty capsid ratios. In this study, we explored three approaches for the application of MP to assess genome length in AAVs. In approach 1, genome length in intact AAVs was approximated with good precision (coefficient of variation [%CV] < 2.6%) and accuracy (±5%) by using a straightforward protein-based calibration. In approach 2, genome length was determined even more accurately (±1%, %CV < 2.9%) considering calibration with a set of additional AAVs of different genome length. In approach 3, genome length was assessed after genome release from the capsid by heating in 1% sodium dodecyl sulfate followed by surfactant removal with precision of %CV < 0.7% and accuracy of ±5%. In conclusion, the three developed MP-based approaches are fast, precise, and accurate methods for genome length determination in AAVs, differing in their calibration materials and efforts.

11.
Eur J Pharm Biopharm ; 182: 152-156, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36410586

RESUMO

During the SARS-CoV2 pandemic mRNA vaccines in the form of lipid nanoparticles (LNPs) containing the mRNA, have set the stage for a new area of vaccines. Analytical methods to quantify changes in size and structure of LNPs are crucial, as changes in these parameters could have implications for potency. We investigated the application of sedimentation velocity analytical ultracentrifugation (SV-AUC) as quantitative stability-indicating method to detect structural changes of mRNA-LNP vaccines upon relevant stress factors (freeze/thaw, heat and mechanical stress), in comparison to qualitative dynamic light scattering (DLS) analysis. DLS was capable to qualitatively determine size and homogeneity of mRNA-LNPs with sufficient precision. Stress factors, in particular freeze/thaw and mechanical stress, led to increased particle size and content of larger species in DLS and SV-AUC. Changes upon heat stress at 50 °C were only detected as increased flotation rates by SV-AUC. In addition, SV-AUC was able to observe changes in particle density, which cannot be detected by DLS. In conclusion, SV-AUC can be used as a highly valuable quantitative stability-indicating method for characterization of LNPs.


Assuntos
COVID-19 , Nanopartículas , Humanos , RNA Mensageiro , Área Sob a Curva , RNA Viral , SARS-CoV-2 , Nanopartículas/química , Ultracentrifugação/métodos
12.
Int J Pharm X ; 5: 100180, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37125084

RESUMO

Freeze-drying is a time and cost-intensive process. The primary drying phase is the main target in a process optimization exercise. Biopharmaceuticals require an amorphous matrix for stabilization, which may collapse during primary drying if the critical temperature of the formulation is exceeded. The risk of product collapse should be minimized during a process optimization to accomplish a robust process, while achieving an economical process time. Mechanistic models facilitate the search for an optimal primary drying protocol. We propose a novel two-stage shelf temperature optimization approach to maximize sublimation during the primary drying phase, without risking product collapse. The approach includes experiments to obtain high-resolution variability data of process parameters such as the heat transfer coefficient, vial dimensions and dried layer resistance. These process parameters variability data are incorporated into an uncertainty analysis to estimate the risk of failure of the protocol. This optimization approach enables to identify primary drying protocols that are faster and more robust than a classical approach. The methodology was experimentally verified using two formulations which allow for either aggressive or conservative freeze-drying of biopharmaceuticals.

13.
J Pharm Sci ; 112(8): 2190-2202, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37211315

RESUMO

Characterization of particulate impurities such as aggregates is necessary to develop safe and efficacious adeno-associated virus (AAV) drug products. Although aggregation of AAVs can reduce the bioavailability of the virus, only a limited number of studies focus on the analysis of aggregates. We explored three technologies for their capability to characterize AAV monomers and aggregates in the submicron (<1 µm) size range: (i) mass photometry (MP), (ii) asymmetric flow field flow fractionation coupled to a UV-detector (AF4-UV/Vis) and (iii) microfluidic resistive pulse sensing (MRPS). Although low counts for aggregates impeded a quantitative analysis, MP was affirmed as an accurate and rapid method for quantifying the genome content of empty/filled/double-filled capsids, consistent with sedimentation velocity analytical ultracentrifugation results. MRPS and AF4-UV/Vis enabled the detection and quantification of aggregate content. The developed AF4-UV/Vis method separated AAV monomers from smaller aggregates, thereby enabling a quantification of aggregates <200 nm. MRPS was experienced as a straightforward method to determine the particle concentration and size distribution between 250-2000 nm, provided that the samples do not block the microfluidic cartridge. Overall, within this study we explored the benefits and limitations of the complementary technologies for assessing aggregate content in AAV samples.


Assuntos
Dependovirus , Fracionamento por Campo e Fluxo , Dependovirus/genética , Fracionamento por Campo e Fluxo/métodos , Vírion/genética , Tamanho da Partícula
14.
Eur J Pharm Biopharm ; 189: 68-83, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37196871

RESUMO

Development and manufacturing adeno-associated virus (AAV)-based vectors for gene therapy requires suitable analytical methods to assess the quality of the formulations during development, as well as the quality of different batches and the consistency of the processes. Here, we compare biophysical methods to characterize purity and DNA content of viral capsids from five different serotypes (AAV2, AAV5, AAV6, AAV8, and AAV9). For this purpose, we apply multiwavelength sedimentation velocity analytical ultracentrifugation (SV-AUC) to obtain the species' contents and to derive the wavelength-specific correction factors for the respective insert-size. In an orthogonal manner we perform anion exchange chromatography (AEX) and UV-spectroscopy and the three methods yield comparable results on empty/filled capsid contents with these correction factors. Whereas AEX and UV-spectroscopy can quantify empty and filled AAVs, only SV-AUC could identify the low amounts of partially filled capsids present in the samples used in this study. Finally, we employ negative-staining transmission electron microscopy and mass photometry to support the empty/filled ratios with methods that classify individual capsids. The obtained ratios are consistent throughout the orthogonal approaches as long as no other impurities and aggregates are present. Our results show that the combination of selected orthogonal methods can deliver consistent empty/filled contents on non-standard genome sizes, as well as information on other relevant critical quality attributes, such as AAV capsid concentration, genome concentration, insert size length and sample purity to characterize and compare AAV preparations.


Assuntos
Capsídeo , Dependovirus , Dependovirus/genética , Dependovirus/química , Vetores Genéticos , Proteínas do Capsídeo , Ultracentrifugação , DNA
15.
Int J Pharm ; 621: 121763, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35472509

RESUMO

The complexity of biopharmaceuticals requires often the freeze-drying as stabilizing process. Inadequate parameters in the primary drying phase can impair product quality, besides, increasing time and costs. Therefore, the process requires a thorough characterization and with this purpose, heat flux sensor (HFS) and miniaturized freeze-dryers conceived to emulate larger equipment, were recently introduced. Our study investigates, for the first time, the use of HFS and miniaturized freeze-dryer (MicroFD) in combination to obtain the heat transfer coefficient (Kv) for two formulation types and freezing protocols. First, as the MicroFD presents the possibility to set the temperature of vial surrounding (LyoSIM), it was determined which set-up was representative for a lab-scale freeze drying process. Additionally, the HFS-based results were compared with the data obtained by the most accurate, but time-consuming and invasive gravimetric method. Second, the role of atypical heat transfer was evaluated for HFS and gravimetric methodology with gold-coated and un-coated vials. Obtained results revealed the HFS and the MicroFD can be used in combination to obtain Kv real-time with much less effort that gravimetrically, to study different vial scenarios, and to design lyophilization processes with a limited amount of material and experiments.


Assuntos
Dessecação , Temperatura Alta , Liofilização/métodos , Congelamento , Tecnologia Farmacêutica/métodos , Temperatura
16.
J Pharm Sci ; 111(4): 861-867, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34813800

RESUMO

Although many subcutaneously (s.c.) delivered, high-concentration antibody formulations (HCAF) have received regulatory approval and are widely used commercially, formulation scientists are still presented with many ongoing challenges during HCAF development with new mAb and mAb-based candidates. Depending on the specific physicochemical and biological properties of a particular mAb-based molecule, such challenges vary from pharmaceutical attributes e.g., stability, viscosity, manufacturability, to clinical performance e.g., bioavailability, immunogenicity, and finally to patient experience e.g., preference for s.c. vs. intravenous delivery and/or preferred interactions with health-care professionals. This commentary focuses on one key formulation obstacle encountered during HCAF development: how to maximize the dose of the drug? We examine methodologies for increasing the protein concentration, increasing the volume delivered, or combining both approaches together. We discuss commonly encountered hurdles, i.e., physical protein instability and solution volume limitations, and we provide recommendations to formulation scientists to facilitate their development of s.c. administered HCAF with new mAb-based product candidates.


Assuntos
Anticorpos Monoclonais , Tela Subcutânea , Anticorpos Monoclonais/química , Disponibilidade Biológica , Humanos , Estudos Longitudinais , Viscosidade
17.
J Pharm Sci ; 111(4): 933-950, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34919969

RESUMO

Particles in biopharmaceutical formulations remain a hot topic in drug product development. With new product classes emerging it is crucial to discriminate particulate active pharmaceutical ingredients from particulate impurities. Technical improvements, new analytical developments and emerging tools (e.g., machine learning tools) increase the amount of information generated for particles. For a proper interpretation and judgment of the generated data a thorough understanding of the measurement principle, suitable application fields and potential limitations and pitfalls is required. Our review provides a comprehensive overview of novel particle analysis techniques emerging in the last decade for particulate impurities in therapeutic protein formulations (protein-related, excipient-related and primary packaging material-related), as well as particulate biopharmaceutical formulations (virus particles, virus-like particles, lipid nanoparticles and cell-based medicinal products). In addition, we review the literature on applications, describe specific analytical approaches and illustrate advantages and drawbacks of currently available techniques for particulate biopharmaceutical formulations.


Assuntos
Produtos Biológicos , Vacinas , Vírus , Composição de Medicamentos , Lipossomos , Nanopartículas , Tamanho da Partícula
18.
Eur J Hosp Pharm ; 2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35853692

RESUMO

OBJECTIVES: Aggregation is one of the key critical points limiting the stability of monoclonal antibodies in solution. The present study aimed to investigate the in-use stability of a residual monoclonal antibody solution after withdrawal of most of the filling volume of PF-06439535 (bevacizumab biosimilar), addressing the physical and chemical stability with respect to aggregation and fragmentation. METHODS: The stability of residual PF-06439535 solution (25 mg/mL) after withdrawal of 80% (12.8 mL) filling volume with a 20G needle was monitored over a light-protected storage period of 8 days at 2-8°C and 25°C with measurement time points at D0 (start of storage), D2, D4, and D8 (2, 4, and 8 days of storage after start, respectively). Unopened vials stored under the same conditions served as control. For this purpose, the analytical results from size exclusion chromatography, dynamic light scattering, and micro-flow imaging obtained after the individual measurement time points up to 8 days were compared with those obtained at D0 and with those obtained for unopened vials stored under the same conditions. RESULTS: No aggregation or ongoing fragmentation due to partial withdrawal of filling volume could be observed in the residual PF-06439535 solution. Moreover, no changes in the particle size distribution at D8 compared with the D0 values were identified upon storage at either 2-8°C or 25°C (both opened and unopened vials). The total concentration of particles ≥10 µm of all samples was <100 particles/mL. In addition, no variations in the pH values or in the visual appearance were detected over the whole study period in all samples at all storage conditions. CONCLUSIONS: Consequently, residual PF-06439535 solution (25 mg/mL) in opened vials may be regarded as stable when stored light-protected over a period of 8 days in the refrigerator (2-8°C) or at 25°C.

19.
Int J Pharm ; 628: 122321, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36273703

RESUMO

Opalescence measurements are broadly applied to assess the quality and stability of biopharmaceutical products at all stages of development and manufacturing. They appear to be simple and straight forward but detect complex light scattering phenomena. Despite a routine calibration step, opalescence values obtained with the same biopharmaceutical sample but on different instruments and/or with different methods may vary significantly. Since the reasons for this high variability are generally not well understood, comparison of opalescence results from different biopharmaceutical laboratories is difficult. Here, we characterized a comprehensive set of biopharmaceutically relevant samples with five opalescence methods to illustrate fundamental differences in method performance and explore the reasons for poor comparability. In addition, we developed a high-throughput method for measuring opalescence in a conventional light scattering plate reader that yields opalescence values in the same range as compendial methods. The presented results underline the impact of sample properties, instrument type, and calibration standards on the determined opalescence value. Based on our findings we provide recommendations for the appropriate application of each method during biopharmaceutical drug product development. Overall, our study contributes to an improved understanding of opalescence measurements in the biopharmaceutical field.


Assuntos
Produtos Biológicos , Iridescência
20.
Pharm Res ; 28(9): 2302-10, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21560019

RESUMO

PURPOSE: To evaluate Taylor dispersion analysis (TDA) as a novel method for determination of hydrodynamic radius of therapeutic peptides and proteins in non-stressed and stressed formulations and to compare it with dynamic light scattering (DLS). METHODS: The hydrodynamic radius of oxytocin, bovine serum albumin, various monoclonal antibodies (type IgG) and etanercept at concentrations between 0.05 and 50 mg/ml was determined by TDA and DLS. IgGs and etanercept were stressed (elevated temperatures) and analyzed by TDA, DLS and HP-SEC. RESULTS: TDA and DLS were comparable in sizing non-stressed peptides and proteins in a concentration range of about 0.5 to 50 mg/ml. TDA performed well even at lower concentrations, where DLS tends to provide theoretically high values of the Z-average radius. However, because of differences in the detection physics, DLS was more weighted towards the detection of aggregates in stressed formulations than TDA. Advantageously, TDA was also able to size the small peptide oxytocin, which was not feasible by DLS. CONCLUSION: TDA allows the accurate determination of the hydrodynamic radius of peptides and proteins over a wide concentration range, with little interference from excipients present in the sample. It is marginally less sensitive than DLS in detecting size increase for stressed protein samples.


Assuntos
Biofarmácia/métodos , Peptídeos/química , Preparações Farmacêuticas/química , Multimerização Proteica , Proteínas/química , Biofarmácia/estatística & dados numéricos , Química Farmacêutica , Cromatografia em Camada Fina , Desenho de Fármacos , Estabilidade de Medicamentos , Excipientes/química , Temperatura Alta , Hidrodinâmica , Luz , Simulação de Dinâmica Molecular , Conformação Proteica , Estabilidade Proteica , Espalhamento de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA