Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Transplant Direct ; 2(6): e77, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27500267

RESUMO

INTRODUCTION: The instant blood-mediated inflammatory reaction (IBMIR) causes major loss of islets after transplantation and consequently represents the initial barrier to survival of porcine neonatal islet cell clusters (NICC) after xenotransplantation. METHODS: This study used novel assays designed to characterize the various immunologic components responsible for xenogeneic IBMIR to identify initiators and investigate processes of IBMIR-associated coagulation, complement activation and neutrophil infiltration. The IBMIR was induced in vitro by exposing NICC to platelet-poor or platelet-rich human plasma or isolated neutrophils. RESULTS: We found that xenogeneic IBMIR was characterized by rapid, platelet-independent thrombin generation, with addition of platelets both accelerating and exacerbating this response. Platelet-independent complement activation was observed as early as 30 minutes after NICC exposure to plasma. However, membrane attack complex formation was not observed in NICC histopathology sections until after 60 minutes. We demonstrated for the first time that NICC-mediated complement activation was necessary for neutrophil activation in the xenogeneic IBMIR setting. Finally, using the Seahorse extracellular flux analyzer, we identified substantial loss of islet function (up to 40%) after IBMIR with surviving NICC showing evidence of mitochondrial damage. CONCLUSIONS: This study used novel assays to describe multiple key pathways by which xenogeneic IBMIR causes islet destruction, allowing further refinement of future interventions aimed at resolving the issue of IBMIR in xenotransplantation.

2.
Cardiovasc Res ; 110(2): 178-87, 2016 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-26790476

RESUMO

AIMS: Mitsugumin-53 (MG53/TRIM72) is an E3-ubiquitin ligase that rapidly accumulates at sites of membrane injury and plays an important role in membrane repair of skeletal and cardiac muscle. MG53 has been implicated in cardiac ischaemia-reperfusion injury, and serum MG53 provides a biomarker of skeletal muscle injury in the mdx mouse model of Duchenne muscular dystrophy. We evaluated the clinical utility of MG53 as a biomarker of myocardial injury. METHODS AND RESULTS: We performed Langendorff ischaemia-reperfusion injury on wild-type and dysferlin-null murine hearts, using dysferlin deficiency to effectively model more severe outcomes from cardiac ischaemia-reperfusion injury. MG53 released into the coronary effluent correlated strongly and significantly (r = 0.79-0.85, P < 0.0001) with functional impairment after ischaemic injury. We initiated a clinical trial in paediatric patients undergoing corrective heart surgery, the first study of MG53 release with myocardial injury in humans. Unexpectedly, we reveal although MG53 is robustly expressed in rat and mouse hearts, MG53 is scant to absent in human, ovine, or porcine hearts. Absence of MG53 in 11 human heart specimens was confirmed using three separate antibodies to MG53, each subject to epitope mapping and confirmed immunospecificity using MG53-deficient muscle cells. CONCLUSION: MG53 is an effective biomarker of myocardial injury and dysfunction in murine hearts. However, MG53 is not expressed in human heart and therefore does not hold utility as a clinical biomarker of myocardial injury. Although cardioprotective roles for endogenous myocardial MG53 cannot be extrapolated from rodents to humans, potential therapeutic application of recombinant MG53 for myocardial membrane injury prevails.


Assuntos
Biomarcadores/análise , Proteínas de Transporte/genética , Proteínas Musculares/genética , Traumatismo por Reperfusão Miocárdica/genética , Miocárdio/metabolismo , Proteínas de Transporte Vesicular/genética , Animais , Proteínas de Transporte/metabolismo , Modelos Animais de Doenças , Feminino , Coração/fisiopatologia , Humanos , Masculino , Proteínas de Membrana , Camundongos , Músculo Esquelético/metabolismo , Traumatismo por Reperfusão Miocárdica/diagnóstico , Ratos , Ovinos , Suínos , Proteínas com Motivo Tripartido
3.
J Neuropathol Exp Neurol ; 70(4): 302-13, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21412170

RESUMO

Mutations in dysferlin cause an inherited muscular dystrophy because of defective membrane repair. Three interacting partners of dysferlin are also implicated in membrane resealing: caveolin-3 (in limb girdle muscular dystrophy type 1C), annexin A1, and the newly identified protein mitsugumin 53 (MG53). Mitsugumin 53 accumulates at sites of membrane damage, and MG53-knockout mice display a progressive muscular dystrophy. This study explored the expression and localization of MG53 in human skeletal muscle, how membrane repair proteins are modulated in various forms of muscular dystrophy, and whether MG53 is a primary cause of human muscle disease. Mitsugumin 53 showed variable sarcolemmal and/or cytoplasmic immunolabeling in control human muscle and elevated levels in dystrophic patients. No pathogenic MG53 mutations were identified in 50 muscular dystrophy patients, suggesting that MG53 is unlikely to be a common cause of muscular dystrophy in Australia. Western blot analysis confirmed upregulation of MG53, as well as of dysferlin, annexin A1, and caveolin-3 to different degrees, in different muscular dystrophies. Importantly, MG53, annexin A1, and dysferlin localize to the t-tubule network and show enriched labeling at longitudinal tubules of the t-system in overstretch. Our results suggest that longitudinal tubules of the t-system may represent sites of physiological membrane damage targeted by this membrane repair complex.


Assuntos
Anexina A1/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Membrana/metabolismo , Microtúbulos/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular do Cíngulo dos Membros/metabolismo , Adolescente , Adulto , Idoso , Biópsia , Western Blotting , Criança , Pré-Escolar , Citoplasma/metabolismo , DNA/genética , Disferlina , Humanos , Imuno-Histoquímica , Lactente , Microscopia Confocal , Pessoa de Meia-Idade , Estimulação Física , Sarcolema/metabolismo , Proteínas com Motivo Tripartido , Regulação para Cima , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA