Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Structure ; 16(12): 1892-901, 2008 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-19081065

RESUMO

Mcm10 is an essential eukaryotic DNA replication protein required for assembly and progression of the replication fork. The highly conserved internal domain (Mcm10-ID) has been shown to physically interact with single-stranded (ss) DNA, DNA polymerase alpha, and proliferating cell nuclear antigen (PCNA). The crystal structure of Xenopus laevis Mcm10-ID presented here reveals a DNA binding architecture composed of an oligonucleotide/oligosaccharide-fold followed in tandem by a variant and highly basic zinc finger. NMR chemical shift perturbation and mutational studies of DNA binding activity in vitro reveal how Mcm10 uses this unique surface to engage ssDNA. Corresponding mutations in Saccharomyces cerevisiae result in increased sensitivity to replication stress, demonstrating the functional importance of DNA binding by this region of Mcm10 to replication. In addition, mapping Mcm10 mutations known to disrupt PCNA, polymerase alpha, and DNA interactions onto the crystal structure provides insight into how Mcm10 might coordinate protein and DNA binding within the replisome.


Assuntos
Replicação do DNA , Proteínas de Ligação a DNA/química , DNA/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Sítios de Ligação , Fenômenos Biofísicos , DNA/genética , Análise Mutacional de DNA , DNA Polimerase I/genética , DNA Polimerase I/metabolismo , Proteínas de Manutenção de Minicromossomo , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Ressonância Magnética Nuclear Biomolecular , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Dedos de Zinco/genética
2.
Sci Rep ; 3: 1977, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23756365

RESUMO

Development of tolerance to endotoxin prevents sustained hyper inflammation during systemic infections. Here we report for the first time that chronic morphine treatment tempers endotoxin tolerance resulting in persistent inflammation, septicemia and septic shock. Morphine was found to down-regulate endotoxin/LPS induced miR-146a and 155 in macrophages. However, only miR-146a over expression, but not miR-155 abrogates morphine mediated hyper-inflammation. Conversely, antagonizing miR-146a (but not miR-155) heightened the severity of morphine-mediated hyper-inflammation. These results suggest that miR-146a acts as a molecular switch controlling hyper-inflammation in clinical and/or recreational use of morphine.


Assuntos
Endotoxinas/toxicidade , MicroRNAs/genética , Morfina/efeitos adversos , Sepse/fisiopatologia , Animais , Linhagem Celular , Lipopolissacarídeos/toxicidade , Camundongos , Receptor 4 Toll-Like/metabolismo
3.
Mol Biol Cell ; 21(18): 3205-19, 2010 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-20660159

RESUMO

The accurate duplication of chromosomal DNA is required to maintain genomic integrity. However, from an evolutionary point of view, a low mutation rate during DNA replication is desirable. One way to strike the right balance between accuracy and limited mutagenesis is to use a DNA polymerase that lacks proofreading activity but contributes to DNA replication in a very restricted manner. DNA polymerase-α fits this purpose exactly, but little is known about its regulation at the replication fork. Minichromosome maintenance protein (Mcm) 10 regulates the stability of the catalytic subunit of pol-α in budding yeast and human cells. Cdc17, the catalytic subunit of pol-α in yeast, is rapidly degraded after depletion of Mcm10. Here we show that Ubc4 and Not4 are required for Cdc17 destabilization. Disruption of Cdc17 turnover resulted in sensitivity to hydroxyurea, suggesting that this pathway is important for DNA replication. Furthermore, overexpression of Cdc17 in ubc4 and not4 mutants caused slow growth and synthetic dosage lethality, respectively. Our data suggest that Cdc17 levels are very tightly regulated through the opposing forces of Ubc4 and Not4 (destabilization) and Mcm10 (stabilization). We conclude that regular turnover of Cdc17 via Ubc4 and Not4 is required for proper cell proliferation.


Assuntos
DNA Polimerase I/metabolismo , Replicação do DNA , Proteínas de Saccharomyces cerevisiae/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Proliferação de Células , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , DNA Polimerase I/genética , Instabilidade Genômica , Humanos , Proteínas de Manutenção de Minicromossomo , Mutação , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Repressoras , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Enzimas de Conjugação de Ubiquitina/genética , Ubiquitina-Proteína Ligases/genética
4.
Nat Cell Biol ; 12(1): 74-9; sup pp 1-20, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20010813

RESUMO

In all eukaryotes, the ligation of newly synthesized DNA, also known as Okazaki fragments, is catalysed by DNA ligase I (ref. 1). An individual with a DNA ligase I deficiency exhibits growth retardation, sunlight sensitivity and severe immunosuppression, probably due to accumulation of DNA damage. Surprisingly, not much is known about the DNA damage response (DDR) in DNA ligase I-deficient cells. As DNA replication and DDR pathways are highly conserved in eukaryotes, we used Saccharomyces cerevisiae as a model system to address this issue. We uncovered a new pathway, which facilitates ubiquitylation at Lys 107 of proliferating cell nuclear antigen (PCNA). Unlike ubiquitylation at Lys 164 of PCNA in response to UV irradiation, which triggers translesion synthesis, modification of Lys 107 is not dependent on the ubiquitin conjugating enzyme (E2) Rad6 (ref. 4) nor the ubiquitin ligase (E3) Rad18 (ref. 5), but requires the E2 variant Mms2 (ref. 6) in conjunction with Ubc4 (ref. 7) and the E3 Rad5 (Refs 8, 9). Surprisingly, DNA ligase I-deficient S. cerevisiae cdc9-1 cells that carry a PCNAK107R mutation are inviable, because they cannot activate a robust DDR. Furthermore, we show that ubiquitylation of PCNA in response to DNA ligase I deficiency is conserved in humans, yet the lysine residue that is modified remains to be determined. We propose that PCNA ubiquitylation provides a 'DNA damage code' that allows cells to categorize different types of defects that arise during DNA replication.


Assuntos
Dano ao DNA/genética , DNA Ligases/metabolismo , Lisina/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Dano ao DNA/efeitos da radiação , DNA Helicases/genética , DNA Helicases/metabolismo , DNA Ligase Dependente de ATP , DNA Ligases/genética , Reparo do DNA , DNA Fúngico/genética , DNA Fúngico/metabolismo , DNA Fúngico/efeitos da radiação , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação Fúngica da Expressão Gênica , Humanos , Lisina/genética , Mutação/genética , Osteossarcoma/genética , Osteossarcoma/metabolismo , Antígeno Nuclear de Célula em Proliferação/genética , Fase S/fisiologia , Fase S/efeitos da radiação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Células Tumorais Cultivadas , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
5.
EMBO J ; 25(15): 3627-39, 2006 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-16888628

RESUMO

The S-phase checkpoint kinases Mec1 and Rad53 in the budding yeast, Saccharomyces cerevisiae, are activated in response to replication stress that induces replication fork arrest. In the absence of a functional S-phase checkpoint, stalled replication forks collapse and give rise to chromosome breakage. In an attempt to better understand replication dynamics in S-phase checkpoint mutants, we developed a replication origin array for budding yeast that contains 424 of 432 previously identified potential origin regions. As expected, mec1-1 and rad53-1 mutants failed to inhibit late origin activation. Surprisingly however, 17 early-firing regions were not replicated efficiently in these mutants. This was not due to a lack of initiation, but rather to problems during elongation, as replication forks arrested in close proximity to these origins, resulting in the accumulation of small replication intermediates and eventual replication fork collapse. Importantly, these regions were not only prone to chromosome breakage in the presence of exogenous stress but also in its absence, similar to fragile sites in the human genome.


Assuntos
Sítios Frágeis do Cromossomo , Replicação do DNA , Fase S , Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quinase do Ponto de Checagem 2 , Regulação Fúngica da Expressão Gênica , Genoma Fúngico , Peptídeos e Proteínas de Sinalização Intracelular , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Origem de Replicação , Fase S/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA