Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Gut ; 73(11): 1854-1869, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-38777573

RESUMO

OBJECTIVE: Alcohol use in metabolic dysfunction-associated steatohepatitis (MASH) is associated with an increased risk of fibrosis and liver-related death. Here, we aimed to identify a mechanism through which repeated alcohol binges exacerbate liver injury in a high fat-cholesterol-sugar diet (MASH diet)-induced model of MASH. DESIGN: C57BL/6 mice received either chow or the MASH diet for 3 months with or without weekly alcohol binges. Neutrophil infiltration, neutrophil extracellular traps (NETs) and fibrosis were evaluated. RESULTS: We found that alcohol binges in MASH increase liver injury and fibrosis. Liver transcriptomic profiling revealed differential expression of genes involved in extracellular matrix reorganisation, neutrophil activation and inflammation compared with alcohol or the MASH diet alone. Alcohol binges specifically increased NET formation in MASH livers in mice, and NETs were also increased in human livers with MASH plus alcohol use. We discovered that cell-free NETs are sensed via Nod-like receptor protein 3 (NLRP3). Furthermore, we show that cell-free NETs in vitro induce a profibrotic phenotype in hepatic stellate cells (HSCs) and proinflammatory monocytes. In vivo, neutrophil depletion using anti-Ly6G antibody or NET disruption with deoxyribonuclease treatment abrogated monocyte and HSC activation and ameliorated liver damage and fibrosis. In vivo, inhibition of NLRP3 using MCC950 or NLRP3 deficiency attenuated NET formation, liver injury and fibrosis in MASH plus alcohol diet-fed mice (graphical abstract). CONCLUSION: Alcohol binges promote liver fibrosis via NET-induced activation of HSCs and monocytes in MASH. Our study highlights the potential of inhibition of NETs and/or NLRP3, as novel therapeutic strategies to combat the profibrotic effects of alcohol in MASH.


Assuntos
Armadilhas Extracelulares , Células Estreladas do Fígado , Monócitos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Humanos , Masculino , Camundongos , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Etanol , Armadilhas Extracelulares/metabolismo , Furanos/farmacologia , Células Estreladas do Fígado/metabolismo , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Indenos , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Cirrose Hepática/etiologia , Camundongos Endogâmicos C57BL , Monócitos/metabolismo , Neutrófilos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Sulfonamidas/farmacologia , Sulfonas/farmacologia
2.
Hepatology ; 78(1): 225-242, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-36862512

RESUMO

BACKGROUND AIMS: Prolonged systemic inflammation contributes to poor clinical outcomes in severe alcohol-associated hepatitis (AH) even after the cessation of alcohol use. However, mechanisms leading to this persistent inflammation remain to be understood. APPROACH RESULTS: We show that while chronic alcohol induces nucleotide-binding oligomerization domain-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome activation in the liver, alcohol binge results not only in NLRP3 inflammasome activation but also in increased circulating extracellular apoptosis-associated speck-like protein containing a caspase recruitment domain (ex-ASC) specks and hepatic ASC aggregates both in patients with AH and in mouse models of AH. These ex-ASC specks persist in circulation even after the cessation of alcohol use. Administration of alcohol-induced-ex-ASC specks in vivo in alcohol-naive mice results in sustained inflammation in the liver and circulation and causes liver damage. Consistent with the key role of ex-ASC specks in mediating liver injury and inflammation, alcohol binge failed to induce liver damage or IL-1ß release in ASC-deficient mice. Our data show that alcohol induces ex-ASC specks in liver macrophages and hepatocytes, and these ex-ASC specks can trigger IL-1ß release in alcohol-naive monocytes, a process that can be prevented by the NLRP3 inhibitor, MCC950. In vivo administration of MCC950 reduced hepatic and ex-ASC specks, caspase-1 activation, IL-1ß production, and steatohepatitis in a murine model of AH. CONCLUSIONS: Our study demonstrates the central role of NLRP3 and ASC in alcohol-induced liver inflammation and unravels the critical role of ex-ASC specks in the propagation of systemic and liver inflammation in AH. Our data also identify NLRP3 as a potential therapeutic target in AH.


Assuntos
Hepatite Alcoólica , Hepatite , Animais , Camundongos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Hepatite/etiologia , Inflamação , Hepatite Alcoólica/etiologia , Etanol/efeitos adversos , Caspase 1/metabolismo , Interleucina-1beta/metabolismo , Proteínas Adaptadoras de Sinalização CARD/metabolismo
3.
Liver Int ; 43(1): 100-114, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35869657

RESUMO

BACKGROUND & AIMS: Pharmacological activation of farnesoid X receptor (FXR) ameliorates liver injury, steatosis and inflammation in mouse models of alcoholic liver disease (ALD), but the underlying mechanisms of the protective effect of FXR against ALD remain unclear. METHODS: To investigate the role of FXR in ALD, we used the NIAAA model of chronic plus binge ethanol feeding in FXR-deficient knockout (FXR KO) mice. RESULTS: Ethanol-mediated liver injury and steatosis were increased in FXR KO mice, while both WT and FXR KO mice consumed the same amount of alcohol. Ethanol feeding induced liver inflammation and neutrophil infiltration that were further increased in FXR KO mice. In addition, collagen accumulation and expression of profibrotic genes were markedly elevated in the liver of alcohol-fed FXR KO compared to wild-type mice, suggesting that ethanol-induced liver fibrosis is enhanced in the absence of FXR. Surprisingly, FXR KO mice showed reduced blood alcohol levels post-binge, while CYP2E1 and ALDH1A1 were upregulated compared to WT mice, suggesting that alcohol metabolism is altered in FXR KO mice. Notably, exacerbated liver injury in FXR KO mice was associated with increased oxidative stress. ALDH1A1 activity was upregulated in FXR-deficient mouse primary hepatocytes, contributing to reactive oxygen species (ROS) generation, in vitro. Finally, using an ALDH1A1 inhibitor, we showed that ALDH1A1 activity is a key contributor to alcohol-induced ROS generation in FXR-deficient hepatocytes, in vitro. CONCLUSION: ALD pathogenesis in FXR KO mice correlates with altered ethanol metabolism and increased oxidative stress, providing new insights into the protective function of FXR in ALD.


Assuntos
Fígado Gorduroso , Hepatopatias Alcoólicas , Camundongos , Animais , Espécies Reativas de Oxigênio/metabolismo , Camundongos Knockout , Fígado/patologia , Etanol/toxicidade , Fígado Gorduroso/patologia , Hepatopatias Alcoólicas/metabolismo , Estresse Oxidativo , Inflamação/patologia , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA