Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Bioinform Adv ; 3(1): vbad102, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37600845

RESUMO

Summary: Artificial intelligence (AI)-driven laboratory automation-combining robotic labware and autonomous software agents-is a powerful trend in modern biology. We developed Genesis-DB, a database system designed to support AI-driven autonomous laboratories by providing software agents access to large quantities of structured domain information. In addition, we present a new ontology for modeling data and metadata from autonomously performed yeast microchemostat cultivations in the framework of the Genesis robot scientist system. We show an example of how Genesis-DB enables the research life cycle by modeling yeast gene regulation, guiding future hypotheses generation and design of experiments. Genesis-DB supports AI-driven discovery through automated reasoning and its design is portable, generic, and easily extensible to other AI-driven molecular biology laboratory data and beyond. Availability and implementation: Genesis-DB code and installation instructions are available at the GitHub repository https://github.com/TW-Genesis/genesis-database-system.git. The database use case demo code and data are also available through GitHub (https://github.com/TW-Genesis/genesis-database-demo.git). The ontology can be downloaded here: https://github.com/TW-Genesis/genesis-ontology/releases/download/v0.0.23/genesis.owl. The ontology term descriptions (including mappings to existing ontologies) and maintenance standard operating procedures can be found at: https://github.com/TW-Genesis/genesis-ontology.

2.
Auton Agent Multi Agent Syst ; 30(6): 1148-1174, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27909393

RESUMO

We describe a large-scale simulation of the aftermath of a hypothetical 10kT improvised nuclear detonation at ground level, near the White House in Washington DC. We take a synthetic information approach, where multiple data sets are combined to construct a synthesized representation of the population of the region with accurate demographics, as well as four infrastructures: transportation, healthcare, communication, and power. In this article, we focus on the model of agents and their behavior, which is represented using the options framework. Six different behavioral options are modeled: household reconstitution, evacuation, healthcare-seeking, worry, shelter-seeking, and aiding & assisting others. Agent decision-making takes into account their health status, information about family members, information about the event, and their local environment. We combine these behavioral options into five different behavior models of increasing complexity and do a number of simulations to compare the models.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA