Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Cereb Cortex ; 29(3): 1121-1138, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29415216

RESUMO

How the variety of neurons that organize into neocortical layers and functional areas arises is a central question in the study of cortical development. While both intrinsic and extrinsic cues are known to influence this process, whether distinct neuronal progenitor groups contribute to neuron diversity and allocation is poorly understood. Using in vivo genetic fate-mapping combined with whole-cell patch clamp recording, we show that the firing pattern and apical dendritic morphology of excitatory neurons in layer 4 of the barrel cortex are specified in part by their neural precursor lineage. Further, we show that separate precursors contribute to unique features of barrel cortex topography including the intralaminar position and thalamic innervation of the neurons they generate. Importantly, many of these lineage-specified characteristics are different from those previously measured for pyramidal neurons in layers 2-3 of the frontal cortex. Collectively, our data elucidate a dynamic temporal program in neuronal precursors that fine-tunes the properties of their progeny according to the lamina of destination.


Assuntos
Células-Tronco Neurais/fisiologia , Células Piramidais/fisiologia , Córtex Somatossensorial/crescimento & desenvolvimento , Potenciais de Ação , Animais , Espinhas Dendríticas , Feminino , Masculino , Camundongos , Modelos Neurológicos , Neocórtex/citologia , Neocórtex/crescimento & desenvolvimento , Células Piramidais/citologia , Córtex Somatossensorial/citologia , Proteínas com Domínio T/metabolismo
2.
J Neurosci ; 36(10): 2926-44, 2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-26961948

RESUMO

Studies in humans with Down syndrome (DS) show that alterations in fetal brain development are followed by postnatal deficits in neuronal numbers, synaptic plasticity, and cognitive and motor function. This same progression is replicated in several mouse models of DS. Dp(16)1Yey/+ (hereafter called Dp16) is a recently developed mouse model of DS in which the entire region of mouse chromosome 16 that is homologous to human chromosome 21 has been triplicated. As such, Dp16 mice may more closely reproduce neurodevelopmental changes occurring in humans with DS. Here, we present the first comprehensive cellular and behavioral study of the Dp16 forebrain from embryonic to adult stages. Unexpectedly, our results demonstrate that Dp16 mice do not have prenatal brain defects previously reported in human fetal neocortex and in the developing forebrains of other mouse models, including microcephaly, reduced neurogenesis, and abnormal cell proliferation. Nevertheless, we found impairments in postnatal developmental milestones, fewer inhibitory forebrain neurons, and deficits in motor and cognitive performance in Dp16 mice. Therefore, although this new model does not express prenatal morphological phenotypes associated with DS, abnormalities in the postnatal period appear sufficient to produce significant cognitive deficits in Dp16.


Assuntos
Encéfalo/anormalidades , Encéfalo/patologia , Anormalidades Craniofaciais/etiologia , Modelos Animais de Doenças , Síndrome de Down/complicações , Síndrome de Down/genética , Trissomia/fisiopatologia , Fatores Etários , Animais , Animais Recém-Nascidos , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Cromossomos Humanos Par 16/genética , Deficiências do Desenvolvimento/etiologia , Embrião de Mamíferos , Comportamento Exploratório/fisiologia , Feminino , Genótipo , Humanos , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Força Muscular/genética , Nestina/genética , Nestina/metabolismo , Neurogênese/genética , Memória Espacial/fisiologia , Trissomia/genética
3.
J Neurosci ; 35(15): 6142-52, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25878286

RESUMO

Several neural precursor populations contemporaneously generate neurons in the developing neocortex. Specifically, radial glial stem cells of the dorsal telencephalon divide asymmetrically to produce excitatory neurons, but also indirectly to produce neurons via three types of intermediate progenitor cells. Why so many precursor types are needed to produce neurons has not been established; whether different intermediate progenitor cells merely expand the output of radial glia or instead generate distinct types of neurons is unknown. Here we use a novel genetic fate mapping technique to simultaneously track multiple precursor streams in the developing mouse brain and show that layer 2 and 3 pyramidal neurons exhibit distinctive electrophysiological and structural properties depending upon their precursor cell type of origin. These data indicate that individual precursor subclasses synchronously produce functionally different neurons, even within the same lamina, and identify a primary mechanism leading to cortical neuronal diversity.


Assuntos
Linhagem da Célula/fisiologia , Neocórtex/citologia , Rede Nervosa/fisiologia , Células-Tronco Neurais/classificação , Células-Tronco Neurais/fisiologia , Células Piramidais/fisiologia , Animais , Eletroporação , Embrião de Mamíferos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Proteínas Luminescentes/metabolismo , Lisina/análogos & derivados , Lisina/metabolismo , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Transgênicos , Neocórtex/embriologia , Técnicas de Patch-Clamp , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo
4.
J Neurosci ; 35(41): 13843-52, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26468184

RESUMO

Down syndrome (DS) is a relatively common genetic condition caused by the triplication of human chromosome 21. No therapies currently exist for the rescue of neurocognitive impairment in DS. This review presents exciting findings showing that it is possible to restore brain development and cognitive performance in mouse models of DS with therapies that can also apply to humans. This knowledge provides a potential breakthrough for the prevention of intellectual disability in DS.


Assuntos
Transtornos Cognitivos/etiologia , Transtornos Cognitivos/terapia , Síndrome de Down/complicações , Animais , Cromossomos Humanos Par 21/genética , Modelos Animais de Doenças , Síndrome de Down/genética , Humanos , Camundongos
5.
Proc Natl Acad Sci U S A ; 110(48): 19567-72, 2013 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-24218590

RESUMO

Bone morphogenetic protein 9 (BMP9) promotes the acquisition of the cholinergic phenotype in basal forebrain cholinergic neurons (BFCN) during development and protects these neurons from cholinergic dedifferentiation following axotomy when administered in vivo. A decline in BFCN function occurs in patients with Alzheimer's disease (AD) and contributes to the AD-associated memory deficits. We infused BMP9 intracerebroventricularly for 7 d in transgenic AD model mice expressing green fluorescent protein specifically in cholinergic neurons (APP.PS1/CHGFP) and in wild-type littermate controls (WT/CHGFP). We used 5-mo-old mice, an age when the AD transgenics display early amyloid deposition and few cholinergic defects, and 10-mo-old mice, by which time these mice exhibit established disease. BMP9 infusion reduced the number of Aß42-positive amyloid plaques in the hippocampus and cerebral cortex of 5- and 10-mo-old APP.PS1/CHGFP mice and reversed the reductions in choline acetyltransferase protein levels in the hippocampus of 10-mo-old APP.PS1/CHGFP mice. The treatment increased cholinergic fiber density in the hippocampus of both WT/CHGFP and APP.PS1/CHGFP mice at both ages. BMP9 infusion also increased hippocampal levels of neurotrophin 3, insulin-like growth factor 1, and nerve growth factor and of the nerve growth factor receptors, tyrosine kinase receptor A and p75/NGFR, irrespective of the genotype of the mice. These data show that BMP9 administration is effective in reducing the Aß42 amyloid plaque burden, reversing cholinergic neuron abnormalities, and generating a neurotrophic milieu for BFCN in a mouse model of AD and provide evidence that the BMP9-signaling pathway may constitute a therapeutic target for AD.


Assuntos
Doença de Alzheimer/metabolismo , Amiloidose/metabolismo , Neurônios Colinérgicos/metabolismo , Fator 2 de Diferenciação de Crescimento/farmacologia , Análise de Variância , Animais , Neurônios Colinérgicos/efeitos dos fármacos , Feminino , Fator 2 de Diferenciação de Crescimento/administração & dosagem , Fator 2 de Diferenciação de Crescimento/metabolismo , Imunoensaio , Immunoblotting , Imuno-Histoquímica , Masculino , Camundongos , Microscopia de Fluorescência
6.
J Neurosci ; 33(12): 5106-19, 2013 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-23516277

RESUMO

While several major classes of neocortical neural precursor cells have been identified, the lineal relationships and molecular profiles of these cells are still largely unknown. Furthermore, the individual contribution of each cell class to neocortical growth during normal development and in neurodevelopmental disorders has not been determined. Using a novel fate-mapping approach, we demonstrate that precursors in the embryonic ventricular (VZ) and subventricular zones (SVZ), which give rise to excitatory neurons, are divided into distinct subtypes based on lineage profile, morphology, and transcription factor expression in vivo. Using this technique, we show that short neural precursors are a unique class of VZ intermediate progenitors derived from radial glial cells and are distinct from the multipolar Tbr2((+)) intermediate progenitors, which divide in the SVZ. To test whether these multiple groups of intermediate progenitors are redundant or whether they are necessary for proper neocortical growth, we measured precursor cell diversity in the Ts65Dn mouse model of Down syndrome (DS), which exhibits reduced neurogenesis and postnatal microcephaly. We report that SNP generation is markedly reduced in the Ts65Dn VZ during mid-neurogenesis, indicating that faulty specification of this progenitor pool is a central component of the neocortical abnormality in DS. Together, these findings demonstrate that neocortical neurons are produced via multiple indirect routes during embryonic development and that these parallel streams of neurogenesis collectively contribute to the proper growth and development of the neocortex.


Assuntos
Síndrome de Down , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Neocórtex/anormalidades , Neocórtex/patologia , Neurogênese/fisiologia , Animais , Divisão Celular/fisiologia , Linhagem da Célula/fisiologia , Modelos Animais de Doenças , Síndrome de Down/genética , Síndrome de Down/patologia , Síndrome de Down/fisiopatologia , Transportador 1 de Aminoácido Excitatório/genética , Proteína 7 de Ligação a Ácidos Graxos , Proteínas de Ligação a Ácido Graxo/genética , Feminino , Genes Reporter/fisiologia , Integrases/genética , Masculino , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Microcefalia/genética , Microcefalia/patologia , Microcefalia/fisiopatologia , Microscopia de Vídeo , Neocórtex/fisiologia , Proteínas do Tecido Nervoso/genética , Células-Tronco Neurais/citologia , Células-Tronco Neurais/fisiologia , Técnicas de Cultura de Órgãos , Gravidez , Receptores de Antígenos de Linfócitos T alfa-beta/genética
7.
Cereb Cortex ; 22(2): 465-8, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22116731

RESUMO

Recent advances in cell labeling and imaging techniques have dramatically expanded our knowledge of the neural precursor cells responsible for corticogenesis. In particular, radial glial cells are now known to generate several classes of restricted progenitors and neurons. While radial glial cells in the ventricular zone have received the most attention, it has become increasingly clear that a distinct subclass of radial glial cells situated in the subventricular zone (SVZ) and intermediate zone also play an important role in corticogenesis. These delaminated radial glial cells, which lack an apical process attached to the ventricular surface but maintain a basal process, were discovered over 3 decades ago. Recently, they have been further characterized as cortical progenitors and renamed outer, intermediate, or basal radial glia (bRG). Some of these studies indicated that bRG abundance in the outer SVZ (oSVZ) is correlated with enhanced gyrencephaly, particularly in primates and especially human, and therefore suggested that bRG may be responsible for the emergence and evolution of cerebral convolutions. In this issue of Cerebral Cortex, 2 papers provide new information about bRG in common marmosets, a near-lissencephalic primate, and in agouti, a near-gyrencephalic rodent (Garcia-Moreno et al. 2011; Kelava et al. 2011). They demonstrate that bRG are abundant and proliferate in inner as well as oSVZ, in both species. Together, these findings indicate that bRG and the oSVZ might not be correlated with gyrification or phylogeny. Rather, differential regulation of bRG and other progenitor types may enhance the adaptability and diversity of cortical morphogenesis.


Assuntos
Callithrix/anatomia & histologia , Callithrix/embriologia , Córtex Cerebral/anatomia & histologia , Ventrículos Cerebrais/citologia , Ventrículos Laterais/citologia , Ventrículos Laterais/embriologia , Neocórtex/anatomia & histologia , Neuroglia/fisiologia , Animais
8.
J Neurosci ; 31(14): 5313-24, 2011 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-21471366

RESUMO

During embryogenesis, the pallial-subpallial boundary (PSB) divides the two main progenitor domains in the telencephalon: the pallium, the major source of excitatory neurons, and the subpallium, the major source of inhibitory neurons. The PSB is formed at the molecular interface between the pallial (high Pax6+) and subpallial (high Gsx2+) ventricular zone (VZ) compartments. Initially, the PSB contains cells that express both Pax6 and Gsx2, but during later stages of development this boundary is largely refined into two separate compartments. In this study we examined the developmental mechanisms underlying PSB boundary formation and the postnatal consequences of conditional loss of Pax6 function at the PSB on neuronal fate in the amygdala and olfactory bulb, two targets of PSB-derived migratory populations. Our cell fate and time-lapse imaging analyses reveal that the sorting of Pax6+ and Gsx2+ progenitors during embryogenesis is the result of a combination of changes in gene expression and cell movements. Interestingly, we find that in addition to giving rise to inhibitory neurons in the amygdala and olfactory bulb, Gsx2+ progenitors generate a subpopulation of amygdala excitatory neurons. Consistent with this finding, targeted conditional ablation of Pax6 in Gsx2+ progenitors results in discrete local embryonic patterning defects that are linked to changes in the generation of subsets of postnatal excitatory and inhibitory neurons in the amygdala and inhibitory neurons in the olfactory bulb. Thus, in PSB progenitors, Pax6 plays an important role in the generation of multiple subtypes of neurons that contribute to the amygdala and olfactory bulb.


Assuntos
Proteínas do Olho/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Homeodomínio/metabolismo , Sistema Límbico/citologia , Sistema Límbico/crescimento & desenvolvimento , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Fatores de Transcrição Box Pareados/metabolismo , Proteínas Repressoras/metabolismo , Animais , Animais Recém-Nascidos , Proteínas de Bactérias/genética , Embrião de Mamíferos , Proteínas do Olho/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Homeodomínio/genética , Proteínas Luminescentes/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/metabolismo , Vias Neurais , Neurônios/classificação , Fator de Transcrição PAX6 , Fatores de Transcrição Box Pareados/genética , Técnicas de Patch-Clamp , Proteínas Repressoras/genética , Telencéfalo , Imagem com Lapso de Tempo/métodos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
PLoS Biol ; 7(8): e1000176, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19688041

RESUMO

During embryogenesis, the neural stem cells (NSC) of the developing cerebral cortex are located in the ventricular zone (VZ) lining the cerebral ventricles. They exhibit apical and basal processes that contact the ventricular surface and the pial basement membrane, respectively. This unique architecture is important for VZ physical integrity and fate determination of NSC daughter cells. In addition, the shorter apical process is critical for interkinetic nuclear migration (INM), which enables VZ cell mitoses at the ventricular surface. Despite their importance, the mechanisms required for NSC adhesion to the ventricle are poorly understood. We have shown previously that one class of candidate adhesion molecules, laminins, are present in the ventricular region and that their integrin receptors are expressed by NSC. However, prior studies only demonstrate a role for their interaction in the attachment of the basal process to the overlying pial basement membrane. Here we use antibody-blocking and genetic experiments to reveal an additional and novel requirement for laminin/integrin interactions in apical process adhesion and NSC regulation. Transient abrogation of integrin binding and signalling using blocking antibodies to specifically target the ventricular region in utero results in abnormal INM and alterations in the orientation of NSC divisions. We found that these defects were also observed in laminin alpha2 deficient mice. More detailed analyses using a multidisciplinary approach to analyse stem cell behaviour by expression of fluorescent transgenes and multiphoton time-lapse imaging revealed that the transient embryonic disruption of laminin/integrin signalling at the VZ surface resulted in apical process detachment from the ventricular surface, dystrophic radial glia fibers, and substantial layering defects in the postnatal neocortex. Collectively, these data reveal novel roles for the laminin/integrin interaction in anchoring embryonic NSCs to the ventricular surface and maintaining the physical integrity of the neocortical niche, with even transient perturbations resulting in long-lasting cortical defects.


Assuntos
Ventrículos Cerebrais , Regulação da Expressão Gênica no Desenvolvimento , Cadeias beta de Integrinas/metabolismo , Neocórtex/embriologia , Transdução de Sinais , Células-Tronco/citologia , Animais , Adesão Celular , Diferenciação Celular , Ventrículos Cerebrais/citologia , Ventrículos Cerebrais/embriologia , Ventrículos Cerebrais/fisiologia , Embrião de Mamíferos , Processamento de Imagem Assistida por Computador , Cadeias beta de Integrinas/genética , Laminina/genética , Laminina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Neocórtex/citologia , Neocórtex/metabolismo , Neurônios/citologia , Neurônios/metabolismo
10.
Front Cell Neurosci ; 16: 941855, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35910249

RESUMO

Great strides have been made over the past 30 years in understanding the neurodevelopmental changes underlying the intellectual disability (ID) in Down syndrome (DS). Detailed studies of human tissue coupled with findings from rodent and induced pluripotent stem cells (iPSCs) model systems have uncovered the changes in neurogenesis, synaptic connectivity, and myelination that drive the anatomical and physiological changes resulting in the disability. However, there remain significant conflicting data between human studies and the models. To fully understand the development of ID in DS, these inconsistencies need to be reconciled. Here, we review the well documented neurodevelopmental phenotypes found in individuals with DS and examine the degree to which widely used models recapitulate these phenotypes. Resolving these areas of discord will further research on the molecular underpinnings and identify potential treatments to improve the independence and quality of life of people with DS.

11.
Nat Commun ; 13(1): 4771, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35970992

RESUMO

Delayed oligodendrocyte (OL) maturation caused by hypoxia (Hx)-induced neonatal brain injury results in hypomyelination and leads to neurological disabilities. Previously, we characterized Sirt1 as a crucial regulator of OL progenitor cell (OPC) proliferation in response to Hx. We now identify Sirt2 as a critical promoter of OL differentiation during both normal white matter development and in a mouse model of Hx. Importantly, we find that Hx reduces Sirt2 expression in mature OLs and that Sirt2 overexpression in OPCs restores mature OL populations. Reduced numbers of Sirt2+ OLs were also observed in the white matter of preterm human infants. We show that Sirt2 interacts with p27Kip1/FoxO1, p21Cip1/Cdk4, and Cdk5 pathways, and that these interactions are altered by Hx. Furthermore, Hx induces nuclear translocation of Sirt2 in OPCs where it binds several genomic targets. Overall, these results indicate that a balance of Sirt1 and Sirt2 activity is required for developmental oligodendrogenesis, and that these proteins represent potential targets for promoting repair following white matter injury.


Assuntos
Hipóxia , Oligodendroglia , Sirtuína 2 , Substância Branca , Animais , Diferenciação Celular , Humanos , Hipóxia/patologia , Lactente , Recém-Nascido , Camundongos , Oligodendroglia/citologia , Sirtuína 1/genética , Sirtuína 1/metabolismo , Sirtuína 2/genética , Sirtuína 2/metabolismo , Substância Branca/metabolismo
12.
Front Neurosci ; 16: 932384, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36161168

RESUMO

The intellectual disability (ID) in Down syndrome (DS) is thought to result from a variety of developmental deficits such as alterations in neural progenitor division, neurogenesis, gliogenesis, cortical architecture, and reduced cortical volume. However, the molecular processes underlying these neurodevelopmental changes are still elusive, preventing an understanding of the mechanistic basis of ID in DS. In this study, we used a pair of isogenic (trisomic and euploid) induced pluripotent stem cell (iPSC) lines to generate cortical spheroids (CS) that model the impact of trisomy 21 on brain development. Cortical spheroids contain neurons, astrocytes, and oligodendrocytes and they are widely used to approximate early neurodevelopment. Using single cell RNA sequencing (scRNA-seq), we uncovered cell type-specific transcriptomic changes in the trisomic CS. In particular, we found that excitatory neuron populations were most affected and that a specific population of cells with a transcriptomic profile resembling layer IV cortical neurons displayed the most profound divergence in developmental trajectory between trisomic and euploid genotypes. We also identified candidate genes potentially driving the developmental asynchrony between trisomic and euploid excitatory neurons. Direct comparison between the current isogenic CS scRNA-seq data and previously published datasets revealed several recurring differentially expressed genes between DS and control samples. Altogether, our study highlights the power and importance of cell type-specific analyses within a defined genetic background, coupled with broader examination of mixed samples, to comprehensively evaluate cellular phenotypes in the context of DS.

13.
J Neurosci ; 30(20): 7028-36, 2010 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-20484645

RESUMO

The recent discovery of short neural precursors (SNPs) in the murine neocortical ventricular zone (VZ) challenges the widely held view that radial glial cells (RGCs) are the sole occupants of this germinal compartment and suggests that precursor variety is an important factor of brain development. Here, we use in utero electroporation and genetic fate mapping to show that SNPs and RGCs cohabit the VZ but display different cell cycle kinetics and generate phenotypically different progeny. In addition, we find that RGC progeny undergo additional rounds of cell division as intermediate progenitor cells (IPCs), whereas SNP progeny generally produce postmitotic neurons directly from the VZ. By clearly defining SNPs as bona fide VZ residents, separate from both RGCs and IPCs, and uncovering their unique proliferative and lineage properties, these results demonstrate how individual neural precursor groups in the embryonic rodent VZ create diversity in the overlying neocortex.


Assuntos
Ciclo Celular/fisiologia , Ventrículos Cerebrais/citologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Neocórtex/citologia , Neurônios/fisiologia , Células-Tronco/fisiologia , Sistema X-AG de Transporte de Aminoácidos/genética , Análise de Variância , Animais , Animais Recém-Nascidos , Bromodesoxiuridina/metabolismo , Ventrículos Cerebrais/embriologia , Ventrículos Cerebrais/crescimento & desenvolvimento , Eletroporação/métodos , Proteínas do Olho/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Homeodomínio/metabolismo , Antígeno Ki-67/metabolismo , Proteínas Luminescentes/genética , Camundongos , Camundongos Endogâmicos ICR , Camundongos Transgênicos , Proteínas do Tecido Nervoso/metabolismo , Neuroglia/metabolismo , Fator de Transcrição PAX6 , Fatores do Domínio POU/metabolismo , Fatores de Transcrição Box Pareados/metabolismo , Proteínas Repressoras/metabolismo , Proteínas com Domínio T/metabolismo , Tubulina (Proteína)/metabolismo , Proteína Vermelha Fluorescente
14.
Dev Neurosci ; 33(5): 428-41, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21865665

RESUMO

Down syndrome (DS), the most frequent genetic cause of intellectual disability and developmental delay, results from impaired neural stem cell proliferation and differentiation. Impaired neurogenesis in the neocortex, hippocampus and cerebellum is believed to be the underlying cause of learning and behavioral deficits in the Ts65Dn mouse model of DS. Aggressive sensorimotor and cognitive therapies have shown promise in mitigating the cognitive disabilities in DS but these behavioral therapies have not yet been investigated at the cellular level. Here, using the Ts65Dn mouse model of DS, we demonstrate that a combination of environmental enrichment and physical exercise starting in juvenile mice (postnatal day 18) markedly increases cell proliferation, neurogenesis and gliogenesis in the hippocampal dentate gyrus (DG) and the forebrain subventricular zone (SVZ) of both male and female mice. Enrichment and exercise increased the rate of Ts65Dn DG neurogenesis to be comparable to that of the nonenriched euploid group, while the effect on SVZ neurogenesis was reduced and seen only after prolonged exposure. These results clearly indicate that in a comprehensive stimulatory environment, the postnatal DS brain has the intrinsic capability of improving neurogenesis and gliogenesis to the levels of normal matched controls and that this cellular response underlies the cognitive improvement seen following behavioral therapies.


Assuntos
Síndrome de Down/fisiopatologia , Meio Ambiente , Neurogênese/fisiologia , Animais , Peso Corporal , Proliferação de Células , Modelos Animais de Doenças , Síndrome de Down/patologia , Feminino , Hipocampo/citologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Atividade Motora
15.
Proc Natl Acad Sci U S A ; 105(33): 11802-7, 2008 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-18689674

RESUMO

Most neurons of the cerebral cortex are generated in the germinal zones near the embryonic cerebral ventricle and migrate radially to the overlying cortical plate. Initially, all dividing cells are attached to the surface of the embryonic ventricle (ventricular zone) until a subset of dividing cells (basal or intermediate neuronal progenitors, INPs), recognized by their immunoreactivity to Tbr2, detach from the ventricular surface and migrate a short distance to establish a secondary proliferative compartment (the subventricular zone). The mechanism that regulates migration of the Tbr2(+) INPs from the ventricular to the subventricular zones is unknown. Here, we show that INPs, unlike the postmitotic neurons that tend to lose the ATP response, continue to express the purinergic P2Y1 receptor. Furthermore, blocking ATP signaling by the P2Y1 blockers, MRS2176, suramin, and apyrase, reduces Ca(2+) transients and retards INP migration to the subventricular zone. In addition, genetic knockdown of the P2Y1 receptor by in vivo application of short hairpin RNA selectively impairs the migration of INPs to the subventricular zone. Together, these results suggest that intercellular ATP signaling is essential for the migration of INPs and the proper formation of the subventricular zone. Interference of ATP signaling or abnormal Ca(2+) fluctuations in INPs may play a significant role in variety of genetic or acquired cortical malformations.


Assuntos
Trifosfato de Adenosina/metabolismo , Ventrículos Cerebrais/citologia , Ventrículos Cerebrais/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Animais , Cálcio/metabolismo , Movimento Celular , Proliferação de Células , Células Cultivadas , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Receptores Purinérgicos P2/genética , Receptores Purinérgicos P2/metabolismo , Transdução de Sinais
16.
eNeuro ; 8(5)2021.
Artigo em Inglês | MEDLINE | ID: mdl-34272257

RESUMO

Prenatal exposure to Zika virus (ZIKV) can result in microencephaly and congenital Zika syndrome, although some brain cells and structures are spared by the virus for unknown reasons. Here, a novel murine model of fetal ZIKV infection incorporating intraventricular infection and cell type-specific in utero electroporation (IUE) was used to identify the time course of ZIKV infection and to determine the identity of cells that are initially infected or spared during neocortical neurogenesis. In vivo time course studies revealed the presence of ZIKV in apical radial glial cells (aRGCs) at early time points following virus exposure, while basal intermediate progenitor cells (bIPCs) became maximally (ZIKV+) after 3 d of virus exposure. ZIKV-infected fetal brains exhibited microencephaly as early as 1 d following infection, regardless of developmental age. This change in brain size was caused in part by apoptosis and reduced proliferation that persisted until birth. While 60% of aRGC basal fibers were perturbed during infection, 40% retained normal morphology, indicating that aRGCs are not uniformly vulnerable to ZIKV infection. To investigate this heterogeneous vulnerability, we performed genetic fate mapping using cell type-specific probes derived from a mouse embryonic day (E)15.5 neocortical wall single-cell RNA sequencing (scRNAseq) dataset. The results indicate that one class of aRGCs preferentially express the putative ZIKV entry receptor AXL and that these cells are more vulnerable to ZIKV infection than other aRGC subtypes with low AXL expression. Together, these data uncover crucial temporal and cellular details of ZIKV fetal brain infection for prevention strategies and for management of congenital Zika syndrome.


Assuntos
Microcefalia , Células-Tronco Neurais , Infecção por Zika virus , Zika virus , Animais , Feminino , Camundongos , Gravidez , Prosencéfalo
17.
Front Cell Neurosci ; 15: 794675, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35058753

RESUMO

The intellectual disability found in people with Down syndrome is associated with numerous changes in early brain development, including the proliferation and differentiation of neural progenitor cells (NPCs) and the formation and maintenance of myelin in the brain. To study how early neural precursors are affected by trisomy 21, we differentiated two isogenic lines of induced pluripotent stem cells derived from people with Down syndrome into brain-like and spinal cord-like NPCs and promoted a transition towards oligodendroglial fate by activating the Sonic hedgehog (SHH) pathway. In the spinal cord-like trisomic cells, we found no difference in expression of OLIG2 or NKX2.2, two transcription factors essential for commitment to the oligodendrocyte lineage. However, in the brain-like trisomic NPCs, OLIG2 is significantly upregulated and is associated with reduced expression of NKX2.2. We found that this gene dysregulation and block in NPC transition can be normalized by increasing the concentration of a SHH pathway agonist (SAG) during differentiation. These results underscore the importance of regional and cell type differences in gene expression in Down syndrome and demonstrate that modulation of SHH signaling in trisomic cells can rescue an early perturbed step in neural lineage specification.

18.
Mol Syndromol ; 12(4): 202-218, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34421499

RESUMO

Research focused on Down syndrome has increased in the last several years to advance understanding of the consequences of trisomy 21 (T21) on molecular and cellular processes and, ultimately, on individuals with Down syndrome. The Trisomy 21 Research Society (T21RS) is the premier scientific organization for researchers and clinicians studying Down syndrome. The Third International Conference of T21RS, held June 6-9, 2019, in Barcelona, Spain, brought together 429 scientists, families, and industry representatives to share the latest discoveries on underlying cellular and molecular mechanisms of T21, define cognitive and behavioral challenges and better understand comorbidities associated with Down syndrome, including Alzheimer's disease and leukemia. Presentation of cutting-edge results in neuroscience, neurology, model systems, psychology, cancer, biomarkers and molecular and phar-ma-cological therapeutic approaches demonstrate the compelling interest and continuing advancement in all aspects of understanding and ameliorating conditions associated with T21.

19.
J Neurosci ; 29(32): 10047-62, 2009 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-19675238

RESUMO

In the postnatal brain, oligodendrocyte progenitor cells (OPCs) arise from the subventricular zone (SVZ) and migrate into the developing white matter, where they differentiate into oligodendrocytes and myelinate axons. The mechanisms regulating OPC migration and differentiation are not fully defined. The present study demonstrates that endothelin-1 (ET-1) is an astrocyte-derived signal that regulates OPC migration and differentiation. OPCs in vivo and in culture express functional ET(A) and ET(B) receptors, which mediate ET-1-induced ERK (extracellular signal-regulated kinase) and CREB (cAMP response element-binding protein) phosphorylation. ET-1 exerts both chemotactic and chemokinetic effects on OPCs to enhance cell migration; it also prevents lineage progression from the O4(+) to the O1(+) stage without affecting cell proliferation. Astrocyte-conditioned medium stimulates OPC migration in culture through ET receptor activation, whereas multiphoton time-lapse imaging shows that selective ET receptor antagonists or anti-ET-1 antibodies inhibit OPC migration from the SVZ. Inhibition of ET receptor activity also derepresses OPC differentiation in the corpus callosum in slice cultures. Our findings indicate that ET-1 is a soluble astrocyte-derived signal that regulates OPC migration and differentiation during development.


Assuntos
Endotelina-1/metabolismo , Oligodendroglia/fisiologia , Células-Tronco/fisiologia , Animais , Astrócitos/metabolismo , Autoanticorpos , Encéfalo/fisiologia , Diferenciação Celular/fisiologia , Linhagem da Célula/fisiologia , Movimento Celular/fisiologia , Células Cultivadas , Quimiotaxia/fisiologia , Meios de Cultivo Condicionados , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Antagonistas do Receptor de Endotelina A , Antagonistas do Receptor de Endotelina B , Endotelina-1/imunologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Técnicas In Vitro , Camundongos , Camundongos Transgênicos , Ratos , Receptor de Endotelina A/metabolismo , Receptor de Endotelina B/metabolismo , Suínos
20.
J Immunol ; 181(7): 4716-22, 2008 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-18802074

RESUMO

Lytic granule exocytosis is the major effector function used by CD8(+) CTL in response to intracellular pathogens and tumors. Despite recent progress in the field, two important aspects of this cytotoxic mechanism remain poorly understood. First, TCR-signaling pathway(s) that selectively induces granule exocytosis in CTL has not been defined to date. Second, it is unclear how Ag receptor-induced signals are converted into mobilization of lytic granules. We recently demonstrated that protein kinase C delta (PKC delta) selectively regulates TCR-induced lytic granule polarization in mouse CD8(+) CTL. To better understand how PKC delta facilitates granule movement, here we studied dynamics of intracellular localization of PKC delta in living CD8(+) CTL. Strikingly, we found that PKC delta localizes to the secretory lysosomes and polarizes toward immunological synapse during the process of target cell killing. Also, biochemical and structure-function studies demonstrated that upon TCR ligation, PKC delta becomes rapidly phosphorylated on the activation loop and regulates granule exocytosis in a kinase-dependent manner. Altogether, our current studies provide new insights concerning the regulation of TCR-induced lytic granule exocytosis by revealing novel intracellular localization of PKC delta, providing the first example of colocalization of a kinase with secretory lysosomes in CD8(+) CTL and demonstrating that PKC delta directly transduces TCR signals leading to polarized granule secretion.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Grânulos Citoplasmáticos/imunologia , Citotoxicidade Imunológica , Lisossomos/enzimologia , Proteína Quinase C-delta/metabolismo , Receptores de Antígenos de Linfócitos T/fisiologia , Transdução de Sinais/imunologia , Linfócitos T Citotóxicos/imunologia , Animais , Apresentação de Antígeno/genética , Linfócitos T CD8-Positivos/enzimologia , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Polaridade Celular/genética , Polaridade Celular/imunologia , Células Cultivadas , Grânulos Citoplasmáticos/enzimologia , Grânulos Citoplasmáticos/metabolismo , Citotoxicidade Imunológica/genética , Sinapses Imunológicas/genética , Leucemia L1210 , Lisossomos/imunologia , Lisossomos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Proteína Quinase C-delta/deficiência , Proteína Quinase C-delta/genética , Proteína Quinase C-delta/fisiologia , Linfócitos T Citotóxicos/enzimologia , Linfócitos T Citotóxicos/metabolismo , Transdução Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA