Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Neurosci ; 60(4): 4393-4408, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38858171

RESUMO

Animal studies and clinical trials suggest that maintenance of gamma-aminobutyric acid (GABA)-ergic activity may be crucial in coping with stressful conditions, anxiety and mood disorders. Drugs highly efficient in promoting anxiolysis were shown to activate this system, particularly via the α2-subunit of type A receptors (GABAA α2). Given the high expression of GABAA α2 in the dentate gyrus (DG) sub-field of the hippocampus, we sought to examine whether manipulation of the α2 subunit in this area will evoke changes in emotional behaviour, memory and learning as well as in synaptic plasticity. We found that knockdown of GABAAα2 receptor specifically in the dorsal DG of rats caused increased anxiety without affecting locomotor activity. Spatial memory and learning in the Morris water maze were also impaired in GABAAα2 receptor knocked down rats, an effect accompanied by alterations in synaptic plasticity, as assessed by long-term potentiation in the DG. Our findings provide further support to the notion that emotional information processing in the hippocampus may be controlled, at least in part, via the inhibitory GABAA α2 receptor subunit, opening a potential avenue for early interventions from pre- puberty into adulthood, as a strategy for controlling anxiety-related psychopathology.


Assuntos
Ansiedade , Giro Denteado , Plasticidade Neuronal , Receptores de GABA-A , Animais , Giro Denteado/metabolismo , Receptores de GABA-A/metabolismo , Receptores de GABA-A/genética , Ansiedade/metabolismo , Plasticidade Neuronal/fisiologia , Masculino , Ratos , Transtornos da Memória/metabolismo , Transtornos da Memória/genética , Aprendizagem em Labirinto/fisiologia , Técnicas de Silenciamento de Genes/métodos , Potenciação de Longa Duração/fisiologia , Ratos Wistar
2.
Neurobiol Stress ; 21: 100506, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36532378

RESUMO

Traumatic stress exposure can form persistent trauma-related memories. However, only a minority of individuals develop post-traumatic stress disorder (PTSD) symptoms upon exposure. We employed a rat model of PTSD, which enables differentiating between exposed-affected and exposed-unaffected individuals. Two weeks after the end of exposure, male rats were tested behaviorally, following an exposure to a trauma reminder, identifying them as trauma 'affected' or 'unaffected.' In light of the established role of hippocampal synaptic plasticity in stress and the essential role of Ca2+/calmodulin-dependent protein kinase II (CaMKII) in hippocampal based synaptic plasticity, we pharmacologically inhibited CaMKII or knocked-down (kd) αCaMKII (in two separate experiments) in the dorsal dentate gyrus of the hippocampus (dDG) following exposure to the same trauma paradigm. Both manipulations brought down the prevalence of 'affected' individuals in the trauma-exposed population. A day after the last behavioral test, long-term potentiation (LTP) was examined in the dDG as a measure of synaptic plasticity. Trauma exposure reduced the ability to induce LTP, whereas, contrary to expectation, αCaMKII-kd reversed this effect. Further examination revealed that reducing αCaMKII expression enables the formation of αCaMKII-independent LTP, which may enable increased resilience in the face of a traumatic experience. The current findings further emphasize the pivotal role dDG has in stress resilience.

3.
Neurobiol Stress ; 15: 100350, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34150959

RESUMO

A high degree of regional, temporal and molecular specificity is evident in the regulation of GABAergic signaling in stress-responsive circuitry, hampering the use of systemic GABAergic modulators for the treatment of stress-related psychopathology. Here we investigated the effectiveness of local intervention with the GABA synthetic enzymes GAD65 and GAD67 in the dorsal dentate gyrus (dDG) vs ventral DG (vDG) to alleviate anxiety-like behavior and stress-induced symptoms in the rat. We induced shRNA-mediated knock down of either GAD65 or GAD67 with lentiviral vectors microinjected into the dDG or vDG of young adult male rats and examined anxiety behavior, learning and memory performance. Subsequently we tested whether reducing GAD65 expression in the dDG would also confer resilience against juvenile stress-induced behavioral and physiological symptoms in adulthood. While knock down of either isoform in the vDG increased anxiety levels in the open field and the elevated plus maze tests, the knock down of GAD65, but not GAD67, in the dDG conferred a significant reduction in anxiety levels. Strikingly, this manipulation also attenuated juvenile stress evoked anxiety behavior, cognitive and synaptic plasticity impairments. Local GABAergic circuitry in the DG plays an important and highly region-specific role in control of emotional behavior and stress responding. Reduction of GAD65 expression in the dDG appears to provide resilience to juvenile stress-induced emotional and cognitive deficits, opening a new direction towards addressing a significant risk factor for developing stress and trauma-related psychopathologies later in life.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA