Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(13)2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37446231

RESUMO

Alzheimer's disease (AD) and Parkinson's disease (PD) are the most common neurodegenerative diseases (NDDs) threatening the lives of millions of people worldwide, including especially elderly people. Currently, due to the lack of a timely diagnosis and proper intervention strategy, AD and PD largely remain incurable. Innovative diagnosis and therapy are highly desired. Exosomes are small vesicles that are present in various bodily fluids, which contain proteins, nucleic acids, and active biomolecules, and which play a crucial role especially in intercellular communication. In recent years, the role of exosomes in the pathogenesis, early diagnosis, and treatment of diseases has attracted ascending attention. However, the exact role of exosomes in the pathogenesis and theragnostic of AD and PD has not been fully illustrated. In the present review, we first introduce the biogenesis, components, uptake, and function of exosomes. Then we elaborate on the involvement of exosomes in the pathogenesis of AD and PD. Moreover, the application of exosomes in the diagnosis and therapeutics of AD and PD is also summarized and discussed. Additionally, exosomes serving as drug carriers to deliver medications to the central nervous system are specifically addressed. The potential role of exosomes in AD and PD is explored, discussing their applications in diagnosis and treatment, as well as their current limitations. Given the limitation in the application of exosomes, we also propose future perspectives for better utilizing exosomes in NDDs. Hopefully, it would pave ways for expanding the biological applications of exosomes in fundamental research as well as theranostics of NDDs.


Assuntos
Doença de Alzheimer , Exossomos , Doença de Parkinson , Humanos , Idoso , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/terapia , Doença de Alzheimer/metabolismo , Exossomos/metabolismo , Doença de Parkinson/diagnóstico , Doença de Parkinson/terapia , Doença de Parkinson/metabolismo , Medicina de Precisão
2.
Neural Regen Res ; 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39104175

RESUMO

Studies have shown that vascular dysfunction is closely related to the pathogenesis of Alzheimer's disease. The middle temporal gyrus region of the brain is susceptible to pronounced impairment in Alzheimer's disease. Identification of the molecules involved in vascular aberrance of the middle temporal gyrus would support elucidation of the mechanisms underlying Alzheimer's disease and discovery of novel targets for intervention. We carried out single-cell transcriptomic analysis of the middle temporal gyrus in the brains of patients with Alzheimer's disease and healthy controls, revealing obvious changes in vascular function. CellChat analysis of intercellular communication in the middle temporal gyrus showed that the number of cell interactions in this region was decreased in Alzheimer's disease patients, with altered intercellular communication of endothelial cells and pericytes being the most prominent. Differentially expressed genes were also identified. Using the CellChat results, AUCell evaluation of the pathway activity of specific cells showed that the obvious changes in vascular function in the middle temporal gyrus in Alzheimer's disease were directly related to changes in the vascular endothelial growth factor (VEGF)A-VEGF receptor (VEGFR) 2 pathway. AUCell analysis identified subtypes of endothelial cells and pericytes directly related to VEGFA-VEGFR2 pathway activity. Two subtypes of middle temporal gyrus cells showed significant alteration in AD: endothelial cells with high expression of Erb-B2 receptor tyrosine kinase 4 (ERBB4high) and pericytes with high expression of angiopoietin-like 4 (ANGPTL4high). Finally, combining bulk RNA sequencing data and two machine learning algorithms (least absolute shrinkage and selection operator and random forest), four characteristic Alzheimer's disease feature genes were identified: somatostatin (SST), protein tyrosine phosphatase non-receptor type 3 (PTPN3), glutinase (GL3), and tropomyosin 3 (PTM3). These genes were downregulated in the middle temporal gyrus of patients with Alzheimer's disease and may be used to target the VEGF pathway. Alzheimer's disease mouse models demonstrated consistent altered expression of these genes in the middle temporal gyrus. In conclusion, this study detected changes in intercellular communication between endothelial cells and pericytes in the middle temporal gyrus and identified four novel feature genes related to middle temporal gyrus and vascular functioning in patients with Alzheimer's disease. These findings contribute to a deeper understanding of the molecular mechanisms underlying Alzheimer's disease and present novel treatment targets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA