Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(32): e202407383, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38751151

RESUMO

The passivation of the defects derived from rapid-crystallization with electron-donating molecules is always a prerequisite to obtain desirable perovskite films for efficient and stable solar cells, thus, the in-depth understanding on the correlations between molecular structure and passivation capacity is of great importance for screening passivators. Here, we introduce the double-ended amide molecule into perovskite precursor solution to modulate crystallization process and passivate defects. By regulating the intermediate bridging skeletons with alkyl, alkenyl and benzene groups, the results show the passivation strength highly depends on the spin-state electronic structure that serves as an intrinsic descriptor to determine the intramolecular charge distribution by controlling orbital electron transfer from the donor segment to acceptor segment. Upon careful optimization, the benzene-bridged amide molecule demonstrates superior efficacy on improving perovskite film quality. As a physical proof-of-concept, the carbon-based, all-inorganic CsPbI2Br solar cell delivers a significantly increased efficiency of 15.51 % with a remarkably improved stability. Based on the same principle, a champion efficiency of 24.20 % is further obtained on the inverted (Cs0.05MA0.05FA0.9)Pb(I0.93Br0.07)3 solar cell. These findings provide new fundamental insights into the influence of spin-state modulation on effective perovskite solar cells.

2.
Small ; 18(8): e2106323, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34898006

RESUMO

The precise phase control of Cs-Pb-Br derivatives from 3D CsPbBr3 to 0D Cs4 PbBr6 highly determines the photovoltaic performance of all-inorganic CsPbBr3 perovskite solar cells (PSCs). Herein, the preferred phase conversion from precursor to Cs-Pb-Br derivatives is revealed by theoretically calculating the Gibbs free energies (∆G) of various phase conversion processes, allowing for a simplified multi-step solution-processable spin-coating method to hinder the formation of detrimental 0D Cs4 PbBr6 phase and enhance the photovoltaic performance of a PSC because of its large exciton binding energy, which is regarded as a recombination center. By further accelerating the interfacial charge extraction with a novel 2D transition metal dichalcogenide ReSe2 , the hole-free CsPbBr3 PSC achieves a champion efficiency of 10.67% with an impressive open-circuit voltage of 1.622 V and an excellent long-term stability. This work provides an in-depth understanding on the precise Cs-Pb-Br perovskite phase control and the effect of derivatives on photovoltaic performance of advanced CsPbBr3 PSCs.

3.
Angew Chem Int Ed Engl ; : e202201209, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35332979

RESUMO

An organic small molecule, 1-bromo-4-(methylsulfinyl)benzene (BBMS), was utilized to reduce the energy disorder of a Sn-Pb alloyed perovskite film via hydrogen bonding and coordination bonding interactions, and the resultant BBMS-treated device showed a high efficiency of over 22 % as well as outstanding long-term stability.

4.
Small ; 14(20): e1704443, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29665218

RESUMO

Perovskite solar cells with cost-effectiveness, high power conversion efficiency, and improved stability are promising solutions to the energy crisis and environmental pollution. However, a wide-bandgap inorganic-semiconductor electron-transporting layer such as TiO2 can harvest ultraviolet light to photodegrade perovskite halides, and the high cost of a state-of-the-art hole-transporting layer is an economic burden for commercialization. Here, the building of a simplified cesium lead bromide (CsPbBr3 ) perovskite solar cell with fluorine-doped tin oxide (FTO)/CsPbBr3 /carbon architecture by a multistep solution-processed deposition technology is demonstrated, achieving an efficiency as high as 4.1% and improved stability upon interfacial modification by graphene quantum dots and CsPbBrI2 quantum dots. This work provides new opportunities of building next-generation solar cells with significantly simplified processes and reduced production costs.

5.
Angew Chem Int Ed Engl ; 57(20): 5746-5749, 2018 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-29603834

RESUMO

Moisture is the worst enemy for state-of-the-art perovskite solar cells (PSCs). However, the flowing water vapor within nanoporous carbonaceous materials can create potentials. Therefore, it is a challenge to integrate water vapor and solar energies into a single PSC device. We demonstrate herein all-inorganic cesium lead bromide (CsPbBr3 ) solar cells tailored with carbon electrodes to simultaneously harvest solar and water-vapor energy. Upon interfacial modification and plasma treatment, the bifunctional PSCs yield a maximum power conversion efficiency up to 9.43 % under one sun irradiation according to photoelectric conversion principle and a power output of 0.158 µW with voltage of 0.35 V and current of 0.45 µA in 80 % relative humidity through the flowing potentials at the carbon/water interface. The initial efficiency is only reduced by 2 % on exposing the inorganic PSC with 80 % humidity over 40 days. The successful realization of physical proof-of-concept multi-energy integrated solar cells provides new opportunities of maximizing overall power output.

6.
Angew Chem Int Ed Engl ; 57(14): 3787-3791, 2018 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-29380514

RESUMO

All-inorganic perovskite solar cells with high efficiency and improved stability are promising for commercialization. A multistep solution-processing method was developed to fabricate high-purity inorganic CsPbBr3 perovskite films for use in efficient solar cells. By tuning the number of deposition cycles (n) of a CsBr solution, the phase conversion from CsPb2 Br5 (n ≤3), to CsPbBr3 (n=4), and Cs4 PbBr6 (n≥5) was optimized to achieve vertical- and monolayer-aligned grains. Upon interfacial modification with graphene quantum dots, the all-inorganic perovskite solar cell (without a hole-transporting layer) achieved a power conversion efficiency (PCE) as high as 9.72 % under standard solar illumination conditions. Under challenging conditions, such as 90 % relative humidity (RH) at 25 °C or 80 °C at zero humidity, the optimized device retained 87 % PCE over 130 days or 95 % over 40 days, compared to the initial efficiency.

7.
Angew Chem Int Ed Engl ; 55(17): 5243-6, 2016 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-26996147

RESUMO

All-weather solar cells are promising in solving the energy crisis. A flexible solar cell is presented that is triggered by combining an electron-enriched graphene electrode with a dye-sensitized solar cell. The new solar cell can be excited by incident light on sunny days and raindrops on rainy days, yielding an optimal solar-to-electric conversion efficiency of 6.53 % under AM 1.5 irradiation and current over microamps as well as a voltage of hundreds of microvolts by simulated raindrops. The formation of π-electron|cation electrical double-layer pseudocapacitors at graphene/raindrop interface is contributable to current and voltage outputs at switchable charging-discharging process. The new concept can guide the design of advanced all-weather solar cells.

8.
Angew Chem Int Ed Engl ; 55(46): 14412-14416, 2016 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-27739638

RESUMO

Solar cells that can harvest energy in all weathers are promising in solving the energy crisis and environmental problems. The power outputs are nearly zero under dark conditions for state-of-the-art solar cells. To address this issue, we present herein a class of platinum alloy (PtMx , M=Ni, Fe, Co, Cu, Mo) tailored all-weather solar cells that can harvest energy from rain and realize photoelectric conversion under sun illumination. By tuning the stoichiometric Pt/M ratio and M species, the optimized solar cell yields a photoelectric conversion efficiency of 10.38 % under simulated sunlight irradiation (AM 1.5, 100 mW cm-2 ) as well as current of 3.90 µA and voltage of 115.52 µV under simulated raindrops. Moreover, the electric signals are highly dependent on the dripping velocity and the concentration of simulated raindrops along with concentrations of cation and anion.

9.
Angew Chem Int Ed Engl ; 54(39): 11448-52, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26220170

RESUMO

The dissolution of platinum (Pt) has been one of the heart issues in developing advanced dye-sensitized solar cells (DSSCs). We present here the experimental realization of stable counter-electrode (CE) electrocatalysts by alloying Pt with transition metals for enhanced dissolution resistance to state-of-the-art iodide/triiodide (I(-)/I3(-)) redox electrolyte. Our focus is placed on the systematic studies of dissolution engineering for PtM0.05 (M=Ni, Co, Fe, Pd, Mo, Cu, Cr, and Au) alloy CE electrocatalysts along with mechanism analysis from thermodynamical aspects, yielding more negative Gibbs free energies for the dissolution reactions of transition metals. The competitive reactions between transition metals with iodide species (I3(-), I2) could protect the Pt atoms from being dissolved by redox electrolyte and therefore remain the high catalytic activity of the Pt electrode.

10.
Angew Chem Int Ed Engl ; 53(52): 14569-74, 2014 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-25358619

RESUMO

The exploration of cost-effective and transparent counter electrodes (CEs) is a persistent objective in the development of bifacial dye-sensitized solar cells (DSSCs). Transparent counter electrodes based on binary-alloy metal selenides (M-Se; M=Co, Ni, Cu, Fe, Ru) are now obtained by a mild, solution-based method and employed in efficient bifacial DSSCs. Owing to superior charge-transfer ability for the I(-) /I3 (-) redox couple, electrocatalytic activity toward I3 (-) reduction, and optical transparency, the bifacial DSSCs with CEs consisting of a metal selenide alloy yield front and rear efficiencies of 8.30 % and 4.63 % for Co0.85 Se, 7.85 % and 4.37 % for Ni0.85 Se, 6.43 % and 4.24 % for Cu0.50 Se, 7.64 % and 5.05 % for FeSe, and 9.22 % and 5.90 % for Ru0.33 Se in comparison with 6.18 % and 3.56 % for a cell with an electrode based on pristine platinum, respectively. Moreover, fast activity onset, high multiple start/stop capability, and relatively good stability demonstrate that these new electrodes should find applications in solar panels.

11.
Angew Chem Int Ed Engl ; 53(40): 10799-803, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25146894

RESUMO

Dye-sensitized solar cells (DSSCs) have attracted growing interest because of their application in renewable energy technologies in developing modern low-carbon economies. However, the commercial application of DSSCs has been hindered by the high expenses of platinum (Pt) counter electrodes (CEs). Here we use Pt-free binary Co-Ni alloys synthesized by a mild hydrothermal strategy as CE materials in efficient DSSCs. As a result of the rapid charge transfer, good electrical conduction, and reasonable electrocatalysis, the power conversion efficiencies of Co-Ni-based DSSCs are higher than those of Pt-only CEs, and the fabrication expense is markedly reduced. The DSSCs based on a CoNi0.25 alloy CE displays an impressive power conversion efficiency of 8.39%, fast start-up, multiple start/stop cycling, and good stability under extended irradiation.

12.
Dalton Trans ; 52(13): 4038-4043, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36880382

RESUMO

Carbon-based all-inorganic perovskite solar cells have attracted growing interest owing to their simple fabrication process, low cost, and high stability in air. On account of the large interfacial energy barriers and polycrystalline features of perovskite films, the carrier interface recombination and inherent defects in the perovskite layer are still great challenges in further increasing the power conversion efficiency and stability of carbon-based PSCs. We present here a trifunctional polyethylene oxide buffer layer at the perovskite/carbon interface to promote the PCE and stability of carbon-based all-inorganic CsPbBr3 PSCs: (i) the PEO layer increases the crystallinity of inorganic CsPbBr3 grains for low defect state density; (ii) the oxygenic groups in PEO chains passivate the defects on the perovskite surface; and (iii) the long hydrophobic alkyl chains improve the stability in moisture. The best encapsulated PSC achieves a PCE of 8.84% and maintains 84.8% of its initial efficiency in air with 80% RH over 30 days.

13.
Dalton Trans ; 52(18): 6146-6151, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37073582

RESUMO

All-inorganic CsPbBr3 perovskite solar cells have received growing attention in the photovoltaic field due to their high stability, low cost, and simple preparation processes. However, the high-density defects in perovskite films and the large energy differences at interfaces have been the main challenges for achieving high power conversion efficiency and good stability. In this work, nickel oxide (NiOx) decorated graphene oxide (GO) is used as a hole collector at the perovskite/carbon interface for a carbon-based CsPbBr3 perovskite solar cell. The crystallinity of the CsPbBr3 perovskite layer and the hole extraction ability are markedly enhanced because of the p-type charge transfer doping of GO from oxygenic groups to NiOx. Finally, the all-inorganic CsPbBr3 perovskite solar cell achieves a power conversion efficiency of 8.59%. More importantly, the best solar cell free of encapsulation retains 94.2% of its initial efficiency in an air environment over 21 days.

14.
Dalton Trans ; 52(28): 9772-9779, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37395456

RESUMO

All-inorganic CsPbBr3 perovskite solar cells (PSCs) without hole-transport materials (HTMs) have attracted widespread attention because of their significant environmental stability. However, the poor quality of perovskite film and the energetics mismatch between CsPbBr3 and charge-transport layers limit the further improvement of the CsPbBr3 PSC performance. To solve this issue, the synergistic effect of alkali metal doping and thiocyanate passivation in NaSCN and KSCN dopants is utilized to improve the properties of the CsPbBr3 film. The Na+ and K+ with smaller ionic radii are doped at the A-site of CsPbBr3 to cause a lattice contraction, which contributes to the formation of CsPbBr3 film with enhanced grain size and crystallinity. The SCN- exerts the function of passivating the uncoordinated Pb2+ defects of CsPbBr3 film, leading to a reduction of trap state density. The incorporation of NaSCN and KSCN dopants also adjusts the band structure of CsPbBr3 film to improve the interfacial energetics match of the device. As a result, the charge recombination is suppressed, and the charge transfer and extraction are effectively promoted, delivering a highly enhanced power conversion efficiency of 10.38% for the champion KSCN doped CsPbBr3 PSCs without HTMs compared to 6.72% efficiency for the original device. Moreover, the stability of the unencapsulated PSCs under ambient conditions with high humidity (85% RH, 25 °C) is distinctly improved, retaining 91.1% of the initial efficiency after 30 days of aging.

15.
J Colloid Interface Sci ; 640: 918-927, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36907152

RESUMO

The precise design of an electron transport layer (ETL) to improve the light-harvesting and quality of perovskite (PVK) film plays a crucial role in the photovoltaic performance of n-i-p perovskite solar cells (PSCs). In this work, a novel three-dimensional (3D) round-comb Fe2O3@SnO2 heterostructure composites with high conductivity and electron mobility induced by its Type-II band alignment and matched lattice spacing is prepared and employed as an efficient mesoporous ETL for all-inorganic CsPbBr3 PSCs. Arising from the multiple light scattering sites provided by the 3D round-comb structure, the diffuse reflectance of Fe2O3@SnO2 composites is increased to improve the light absorption of the deposited PVK film. Besides, the mesoporous Fe2O3@SnO2 ETL affords not only more active surface for sufficient exposure to the CsPbBr3 precursor solution but also a wettable surface to reduce the barrier for heterogeneous nucleation, which realizes the regulated growth of a high-quality PVK film with less undesired defect. Hence, both the light-harvesting capability, the photoelectrons transport and extraction are improved, and the charge recombination is restrained, delivering an optimized power conversion efficiency (PCE) of 10.23 % with a high short-circuit current density of 7.88 mA cm-2 for the c-TiO2/Fe2O3@SnO2 ETL based all-inorganic CsPbBr3 PSCs. Moreover, under lasting erosion at 25 °C and 85 % RH for 30 days and light-soaking (AM 1.5G) for 480 h in air atmosphere, the unencapsulated-device shows superiorly persistent durability.

16.
Adv Mater ; 34(26): e2202301, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35460143

RESUMO

Healing charge-selective contact interfaces in perovskite solar cells (PSCs) highly determines the power conversion efficiency (PCE) and stability. However, the state-of-the-art strategies are often static by one-off formation of a functional interlayer, which delivers fixed interfacial properties during the subsequent operation. As a result, defects formed in-service will gradually deteriorate the photovoltaic performances. Herein, a dynamic healing interface (DHI) is presented by incorporating a low-melting-point small molecule onto perovskite film surface for highly efficient and stable PSCs. Arising from the reduced non-radiative recombination, the DHI boosts the PCE to 12.05% for an all-inorganic CsPbIBr2 solar cell and 14.14% for a CsPbI2 Br cell, as well as 23.37% for an FA0.92 MA0.08 PbI3 (FA = formamidinium, MA = methylammonium) cell. The solid-to-liquid phase conversion of DHI at elevated temperature causes a longitudinal infiltration into the bulk perovskite film to maximize the charge extraction, passivate defects at grain boundaries, and suppress ion migration. Furthermore, the stability is remarkably enhanced under air, heat, and persistent light-irradiation conditions, paving a universal strategy for advanced perovskite-based optoelectronics.

17.
Chem Commun (Camb) ; 57(61): 7577-7580, 2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34250992

RESUMO

We present the fabrication of electron-rich Pt3M alloy-tailored carbon electrodes to maximize hole extraction. Through optimizing the doses and alloy species systematically, the best all-inorganic CsPbBr3 perovskite solar cell achieved a power conversion efficiency of 9.08% and showed excellent long-term stability at 80% RH over 20 days.

18.
ACS Appl Mater Interfaces ; 13(9): 11058-11066, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33634693

RESUMO

The all-inorganic cesium lead bromide (CsPbBr3) perovskite solar cells (PSCs) have attracted considerable interest because of their outstanding environmental stability and low manufacturing cost. However, the state-of-the-art mesoscopic titanium dioxide (TiO2) electron-transporting layers (ETLs) always present low electron mobility, are destructive to perovskites under ultraviolet light illumination, as well as possess high sintering temperature. Nanostructured tin dioxide (SnO2) is a promising electron-transporting material for high-efficiency PSCs due to matching energy-level alignment with the perovskite layer, improved optical transparency, high electron mobility, excellent photostability, and low-temperature processing. Furthermore, rapid but poorly controlled perovskite crystallization makes it difficult to scale up planar PSCs for industrial applications. To address this issue, we adopt a dimensional SnO2 ETL to change the surface wettability for uniform perovskite coverage over large areas and the growth of large-sized CsPbBr3 grains, resulting in a maximum grain size of 1.65 µm. Moreover, the dimensional SnO2 ETL could increase the interfacial contact area between the CsPbBr3 layer and the ETL and enhance the electronic contact for efficient electron extraction to suppress or to eliminate the notorious hysteresis behavior. As expected, a power conversion efficiency (PCE) of 9.51% with an almost hysteresis-free phenomenon is achieved through dimensionality control of SnO2 films attributed to the remarkably enhanced light harvesting, accelerated electron extraction, diminished defect density, and reduced charge recombination. Upon further interfacial modification with graphene quantum dots (GQDs), the PSC based on the two-dimensional SnO2 ETL achieves a champion PCE of 10.34% due to the improved energy-level alignment at the device interface. Moreover, the best all-inorganic CsPbBr3 PSC free of encapsulation retains 93% of initial efficiency over 10 days at 80% relative humidity. This work provides an effective dimensionality control strategy for optimized charge transportation and enlarged perovskite grain size to make stable and efficient all-inorganic CsPbBr3 PSCs.

19.
ACS Appl Mater Interfaces ; 13(23): 27522-27532, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34080845

RESUMO

Dielectric polymer capacitors are extensively applied in advanced electronics by virtue of their extremely high power density. However, it remains a challenge to concurrently realize high energy density and high discharge efficiency. In order to solve this conundrum, we herein design a novel all-polymer trilayer structure, where the paraelectric poly(methyl methacrylate) (PMMA) is used as the top layer to obtain a high discharge efficiency, and ferroelectric P(VDF-HFP) is employed as the bottom layer to obtain a high energy density. Particularly, the PMMA/poly(vinylidene fluoride-hexafluoropropylene) (P(VDF-HFP)) blend composite is used as the middle layer to homogenize the electric field inside the trilayer composites, turning out an obviously boosted breakdown strength and elevated energy density. Consequently, an efficiency as high as 85% and an energy density up to 7.5 J/cm3 along with excellent cycling stability are simultaneously realized at an ultrahigh electric field of 490 kV/mm. These attractive characteristics of the all-polymer trilayer structure suggest that the feasible pathway presented herein is significant to realize concurrently a high energy density and discharge efficiency.

20.
ACS Appl Mater Interfaces ; 12(4): 4540-4548, 2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-31904210

RESUMO

The defect passivation of perovskite films is an efficacious way to further boost the power conversion efficiency (PCE) and long-term stability of perovskite solar cells (PSCs). In this work, ionic liquids (ILs) of 1-butyl-2,3-dimethylimidazolium chloride ([BMMIm]Cl) are used as a modification layer in perovskite films in carbon-based CsPbBr3 PSCs without a hole-transporting material (HTM) for passivating the surface defects. The preliminary results demonstrate that the [BMMIm]Cl modifier passivates the surface defects of the perovskite film and reduces the valence band of perovskite close to the work function of the carbon electrode, which causes a remarkably inhibited nonradiative and radiative charge recombination, improved energy-level matching, and decreased energy loss. After optimization, a champion efficiency of 9.92% with a Voc as high as 1.61 V is achieved for the [BMMIm]Cl tailored carbon-based CsPbBr3 PSC without HTM, which is improved by 61.3% in comparison with 6.15% for the control device. Furthermore, the encapsulation-free PSC presents good long-term stability after storage in an air atmosphere with 70% RH at 20 °C or 0% RH at 80 °C as well as under continuous illumination conditions for 30 days. The significantly improved PCE and stability in high humidity or temperature suggest that the perovskite passivation by ILs is an effective strategy for fabricating high-PCE and stable PSCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA