Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Biol Sci ; 20(3): 1042-1044, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38322120

RESUMO

Disulfidptosis occurs as a result of the accumulation of intracellular cystine followed by disulfide stress in actin cytoskeleton proteins due to a reduction of NADPH produced through the pentose phosphate pathway in cells with high expression of SLC7A11. It is a cell death caused by the redox imbalance resulting from the disruption of amino acid metabolism and glucose metabolism. The discovery of disulfidptosis has sparked immense enthusiasm, but there are numerous unresolved issues that need to be addressed. Solutions to these riddles will provide insights into the detailed mechanisms and the pathophysiological relevance of disulfidptosis and utilizing disulfidptosis as an actionable therapeutic target.


Assuntos
Dissulfetos , Proteínas dos Microfilamentos , Morte Celular , NADP
2.
J Cancer ; 15(11): 3272-3283, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38817858

RESUMO

Despite advances in the treatment of breast cancer, the disease continues to exhibit high global morbidity and mortality. The importance of neutrophils in cancer development has been increasingly recognized. Neutrophil extracellular traps (NETs) are web-like structures released into the extracellular space by activated neutrophils, serving as a potential antimicrobial mechanism for capturing and eliminating microorganisms. The roles played by NETs in cancer development have been a subject of intense research in the last decade. In breast cancer, current evidence suggests that NETs are involved in various stages of cancer development, particularly during metastasis. In this review, we try to provide an updated overview of the roles played by NETs in breast cancer metastasis. These include: 1) facilitating systemic dissemination of cancer cells; 2) promoting cancer-associated inflammation; 3) facilitating cancer-associated thrombosis; 4) facilitating pre-metastatic niche formation; and 5) awakening dormant cancer cells. The translational implications of NETs in breast cancer treatment are also discussed. Understanding the relationship between NETs and breast cancer metastasis is expected to provide important insights for developing new therapeutic strategies for breast cancer patients.

3.
Int J Biol Sci ; 20(6): 2130-2148, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617541

RESUMO

Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer with limited effective therapeutic options readily available. We have previously demonstrated that lovastatin, an FDA-approved lipid-lowering drug, selectively inhibits the stemness properties of TNBC. However, the intracellular targets of lovastatin in TNBC remain largely unknown. Here, we unexpectedly uncovered ribosome biogenesis as the predominant pathway targeted by lovastatin in TNBC. Lovastatin induced the translocation of ribosome biogenesis-related proteins including nucleophosmin (NPM), nucleolar and coiled-body phosphoprotein 1 (NOLC1), and the ribosomal protein RPL3. Lovastatin also suppressed the transcript levels of rRNAs and increased the nuclear protein level and transcriptional activity of p53, a master mediator of nucleolar stress. A prognostic model generated from 10 ribosome biogenesis-related genes showed outstanding performance in predicting the survival of TNBC patients. Mitochondrial ribosomal protein S27 (MRPS27), the top-ranked risky model gene, was highly expressed and correlated with tumor stage and lymph node involvement in TNBC. Mechanistically, MRPS27 knockdown inhibited the stemness properties and the malignant phenotypes of TNBC. Overexpression of MRPS27 attenuated the stemness-inhibitory effect of lovastatin in TNBC cells. Our findings reveal that dysregulated ribosome biogenesis is a targetable vulnerability and targeting MRPS27 could be a novel therapeutic strategy for TNBC patients.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Lovastatina/farmacologia , Lovastatina/uso terapêutico , Proteínas Ribossômicas/genética , Proteínas Nucleares , Ribossomos/genética , Proteínas Mitocondriais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA