Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 6933, 2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36376308

RESUMO

Graphene quantum Hall effect (QHE) resistance standards have the potential to provide superior realizations of three key units in the new International System of Units (SI): the ohm, the ampere, and the kilogram (Kibble Balance). However, these prospects require different resistance values than practically achievable in single graphene devices (~12.9 kΩ), and they need bias currents two orders of magnitude higher than typical breakdown currents IC ~ 100 µA. Here we present experiments on quantization accuracy of a 236-element quantum Hall array (QHA), demonstrating RK/236 ≈ 109 Ω with 0.2 part-per-billion (nΩ/Ω) accuracy with IC ≥ 5 mA (~1 nΩ/Ω accuracy for IC = 8.5 mA), using epitaxial graphene on silicon carbide (epigraphene). The array accuracy, comparable to the most precise universality tests of QHE, together with the scalability and reliability of this approach, pave the road for wider use of graphene in the new SI and beyond.

2.
Sci Rep ; 10(1): 6471, 2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-32277080

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

3.
Sci Rep ; 8(1): 4948, 2018 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-29563568

RESUMO

Using magneto transport, we probe hopping length scales in the variable range hopping conduction of carbonized polyacetylene and polyaniline nanofibers. In contrast to pristine polyacetylene nanofibers that show vanishing magneto conductance at large electric fields, carbonized polymer nanofibers display a negative magneto conductance that decreases in magnitude but remains finite with respect to the electric field. We show that this behavior of magneto conductance is an indicator of the electric field and temperature dependence of hopping length in the gradual transition from the thermally activated to the activation-less electric field driven variable range hopping transport. This reveals magneto transport as a useful tool to probe hopping lengths in the non-linear hopping regime.

4.
Nat Commun ; 9(1): 3956, 2018 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-30262825

RESUMO

Tuning the charge carrier density of two-dimensional (2D) materials by incorporating dopants into the crystal lattice is a challenging task. An attractive alternative is the surface transfer doping by adsorption of molecules on 2D crystals, which can lead to ordered molecular arrays. However, such systems, demonstrated in ultra-high vacuum conditions (UHV), are often unstable in ambient conditions. Here we show that air-stable doping of epitaxial graphene on SiC-achieved by spin-coating deposition of 2,3,5,6-tetrafluoro-tetracyano-quino-dimethane (F4TCNQ) incorporated in poly(methyl-methacrylate)-proceeds via the spontaneous accumulation of dopants at the graphene-polymer interface and by the formation of a charge-transfer complex that yields low-disorder, charge-neutral, large-area graphene with carrier mobilities ~70 000 cm2 V-1 s-1 at cryogenic temperatures. The assembly of dopants on 2D materials assisted by a polymer matrix, demonstrated by spin-coating wafer-scale substrates in ambient conditions, opens up a scalable technological route toward expanding the functionality of 2D materials.

5.
Sci Rep ; 6: 37783, 2016 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-27886233

RESUMO

We induce dramatic changes in the structure of conducting polymer nanofibers by carbonization at 800 °C and compare charge transport properties between carbonized and pristine nanofibers. Despite the profound structural differences, both types of systems display power law dependence of current with voltage and temperature, and all measurements can be scaled into a single universal curve. We analyze our experimental data in the framework of variable range hopping and argue that this mechanism can explain transport properties of pristine polymer nanofibers as well.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA