RESUMO
MAIN CONCLUSION: The banana development was inhibited under the long-term magnesium deficiency (MD) stress, resulting in the leaf chlorosis. MYB108 and WRKY75 are involved in regulating the growth and development of banana leaves and roots under long-term MD. Magnesium deficiency (MD) causes plant growth inhibition, ageing acceleration, yield reduction and quality decline of banana (Musa paradisiaca AA), but the molecular regulatory mechanisms underlying the changes in response to long-term MD conditions remain unknown. In this study, a long-term MD experiment was performed with banana seedlings at the four-leaf stage. Compared to those in the control group, the growth of leaves and roots of seedlings in the long-term MD treatment experimental groups was inhibited, and the Mg content and chlorophyll contents were decreased. Leaves and roots of seedlings from the control and experimental groups were subsequently collected for RNA sequencing to identify the genes that respond to long-term MD. More than 50 million reads were identified from each sample, resulting in the detection of 3500 and 948 differentially expressed genes (DEGs) in the leaves and roots, respectively. MYB and WRKY transcription factors (TFs) involved in plant stress responses were selected for further analysis, and 102 MYB and 149 WRKY TFs were differentially expressed. Furthermore, two highly differentially expressed candidate genes, MYB108 and WRKY75, were functionally analyzed using Arabidopsis mutants grown under long-term MD conditions. The results showed that the density of root hairs on the wild type (WT) was than that on the myb108 and wrky75 mutants under MD, implying that the mutants were more sensitive to MD than the WT. This research broadens our understanding the underlying molecular mechanism of banana seedlings adapted to the long-term MD condition.
Assuntos
Deficiência de Magnésio , Musa , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Musa/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma/genéticaRESUMO
This study aimed to investigate the morphological characteristics of fruits and seeds from Diptychocarpus strictus, a plant species inhabiting the cold desert pastoral area of China. Furthermore, this study sought to evaluate the germination potential of these seeds following digestion by sheep. This study employed the sheep rumen fistula method to simulate rumen digestion at various time intervals. Subsequently, an in vitro simulation method was utilized to simulate true gastric and intestinal digestion after rumen digestion. Paper germination tests were then conducted to assess the impact of the digestive process on the heteromorphic seed morphology and germination. During rumen digestion, the seeds were protected by wide wings. The results revealed a highly significant negative correlation (p < 0.01) between seed wing length and digestion time. Post-rumen digestion, variations in the germination rate among seeds from fruits at different locations were observed. Indicators, such as germination rate, exhibited a highly significant negative correlation with rumen digestion time (p < 0.01). In vitro simulated digestion tests demonstrated that Diptychocarpus strictus seeds retained their ability to germinate even after complete digestion within the livestock's digestive tract. The polymorphic nature of Diptychocarpus strictus seeds, coupled with their capacity to survive and germinate through the digestive tract, facilitates the spread of these seeds. This finding has implications for mitigating desert grassland degradation and promoting sustainable ecological development.
RESUMO
Magnesium (Mg) plays an irreplaceable role in plant growth and development. Mg transporters, especially CorA/MGT/MRS2 family proteins, played a vital role in regulating Mg content in plant cells. Although extensive work has been conducted in model crops, such as Arabidopsis, rice, and maize, the relevant information is scarce in tropical crops. In this study, 10 MaMRS2 genes in banana (Musa acuminata) were isolated from its genome and classified into five distinct clades. The putative physiochemical properties, chromosome location, gene structure, cis-acting elements, and duplication relationships in between these members were analyzed. Complementary experiments revealed that three MaMRS2 gene members (MaMRS2-1, MaMRS2-4, MaMRS2-7), from three distinct phylogenetic branches, were capable of restoring the function of Mg transport in Salmonella typhimurium mutants. Semi-quantitative RT-PCR showed that MaMRS2 genes were differentially expressed in banana cultivar 'Baxijiao' (Musa spp. AAA Cavendish) seedlings. The result was confirmed by real-time PCR analysis, in addition to tissue specific expression, expression differences among MaMRS2 members were also observed under Mg deficiency conditions. These results showed that Mg transporters may play a versatile role in banana growth and development, and our work will shed light on the functional analysis of Mg transporters in banana.