Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Bull (Beijing) ; 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38945747

RESUMO

Water has been detected in lunar regolith, with multiple sources identified through the analysis of individual grains. However, the primary origin of water in the bulk lunar regolith remains uncertain. This study presents spectroscopic analyses of water content in sealed Chang'e-5 samples. These samples were sieved into various size fractions (bulk, <45 µm, and 45-355 µm) inside a glovebox filled with high-purity nitrogen. Results indicate a higher water content in the fine fractions (∼87 ± 11.9 ppm) than in bulk soil (∼37 ± 4.8 ppm) and coarse fractions (∼11 ± 1.5 ppm). This suggests that water is predominantly concentrated in the outermost rims of the regolith grains, and thus exhibits dependence on the surface volume ratio (also known as surface correlation), indicating solar wind is a primary source of lunar surface water. Laboratory, in-situ, and orbital results bridge sample analysis and remote sensing, offering a cohesive understanding of lunar surface water characteristics as represented by Chang'e-5. The discovery provides statistical evidence for the origin of water in lunar soil and can be considered representative of the lunar surface conditions. The water enrichment of the finest fraction suggests the feasibility of employing size sorting of lunar soils as a potential technological approach for water resource extraction in future lunar research stations.

2.
Sci Bull (Beijing) ; 69(13): 2136-2148, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38777682

RESUMO

Lunar exploration is deemed crucial for uncovering the origins of the Earth-Moon system and is the first step for advancing humanity's exploration of deep space. Over the past decade, the Chinese Lunar Exploration Program (CLEP), also known as the Chang'e (CE) Project, has achieved remarkable milestones. It has successfully developed and demonstrated the engineering capability required to reach and return from the lunar surface. Notably, the CE Project has made historic firsts with the landing and on-site exploration of the far side of the Moon, along with the collection of the youngest volcanic samples from the Procellarum KREEP Terrane. These achievements have significantly enhanced our understanding of lunar evolution. Building on this success, China has proposed an ambitious crewed lunar exploration strategy, aiming to return to the Moon for scientific exploration and utilization. This plan encompasses two primary phases: the first crewed lunar landing and exploration, followed by a thousand-kilometer scale scientific expedition to construct a geological cross-section across the lunar surface. Recognizing the limitations of current lunar exploration efforts and China's engineering and technical capabilities, this paper explores the benefits of crewed lunar exploration while leveraging synergies with robotic exploration. The study refines fundamental lunar scientific questions that could lead to significant breakthroughs, considering the respective engineering and technological requirements. This research lays a crucial foundation for defining the objectives of future lunar exploration, emphasizing the importance of crewed missions and offering insights into potential advancements in lunar science.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA