Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Lipid Res ; 60(12): 2020-2033, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31662443

RESUMO

CXC chemokine ligand 12 (CXCL12) is a member of the CXC chemokine family and mainly acts on cell chemotaxis. CXCL12 also elicits a proatherogenic role, but the molecular mechanisms have not been fully defined yet. We aimed to reveal if and how CXCL12 promoted atherosclerosis via regulating lipid metabolism. In vitro, our data showed that CXCL12 could reduce ABCA1 expression, and it mediated cholesterol efflux from THP-1-derived macrophages to apoA-I. Data from the luciferase reporter gene and chromatin immunoprecipitation assays revealed that transcription factor 21 (TCF21) stimulated the transcription of ABCA1 via binding to its promoter region, which was repressed by CXCL12. We found that CXCL12 increased the levels of phosphorylated glycogen synthase kinase 3ß (GSK3ß) and the phosphorylation of ß-catenin at the Thr120 position. Inactivation of GSK3ß or ß-catenin increased the expression of TCF21 and ABCA1. Further, knockdown or inhibition of CXC chemokine receptor 4 (CXCR4) blocked the effects of CXCL12 on TCF21 and ABCA1 expression and the phosphorylation of GSK3ß and ß-catenin. In vivo, the overexpression of CXCL12 in Apoe-/- mice via lentivirus enlarged the atherosclerotic lesion area and increased macrophage infiltration in atherosclerotic plaques. We further found that the overexpression of CXCL12 reduced the efficiency of reverse cholesterol transport and plasma HDL-C levels, decreased ABCA1 expression in the aorta and mouse peritoneal macrophages (MPMs), and suppressed cholesterol efflux from MPMs to apoA-I in Apoe-/- mice. Collectively, these findings suggest that CXCL12 interacts with CXCR4 and then activates the GSK-3ß/ß-cateninT120/TCF21 signaling pathway to inhibit ABCA1-dependent cholesterol efflux from macrophages and aggravate atherosclerosis. Targeting CXCL12 may be a novel and promising strategy for the prevention and treatment of atherosclerotic cardiovascular diseases.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/genética , Aterosclerose/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Quimiocina CXCL12/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Receptores CXCR4/metabolismo , beta Catenina/metabolismo , Animais , Apolipoproteínas E/deficiência , Aterosclerose/genética , Aterosclerose/patologia , Colesterol/metabolismo , Regulação para Baixo , Células HEK293 , Humanos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
2.
Biochem Biophys Res Commun ; 500(2): 318-324, 2018 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-29653102

RESUMO

Atherosclerosis is a dyslipidemia disease characterized by foam cell formation driven by the accumulation of lipids. Visceral adipose tissue-derived serine protease inhibitor (vaspin) is known to suppress the development of atherosclerosis via its anti-inflammatory properties, but it is not yet known whether vaspin affects cholesterol efflux in THP-1 macrophage-derived foam cells. Here, we investigated the effects of vaspin on ABCA1 expression and cholesterol efflux, and further explored the underlying mechanism. We found that vaspin decreased miR-33a levels, which in turn increased ABCA1 expression and cholesteorl efflux. We also found that inhibition of NF-κB reduced miR-33a expression and vaspin suppressed LPS-mediated NF-κB phosphorylation. Our findings suggest that vaspin is not only a regular of inflammasion but also a promoter of cholesterol efflux.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/metabolismo , Colesterol/metabolismo , Células Espumosas/metabolismo , Gordura Intra-Abdominal/metabolismo , Macrófagos/citologia , MicroRNAs/metabolismo , NF-kappa B/metabolismo , Serpinas/metabolismo , Regulação para Cima , Transportador 1 de Cassete de Ligação de ATP/genética , Sequência de Bases , Linhagem Celular , Regulação para Baixo , Células Espumosas/efeitos dos fármacos , Humanos , Metabolismo dos Lipídeos , MicroRNAs/genética , Transdução de Sinais
3.
Artigo em Inglês | MEDLINE | ID: mdl-31678621

RESUMO

OBJECTIVE: Angiopoietin-1 (Ang-1), a secreted protein, mainly regulates angiogenesis. Ang-1 has been shown to promote the development of atherosclerosis, whereas little is known about its effects on lipid metabolism and inflammation in this process. METHOD: Ang-1 was transfected into ApoE-/- mice via lentiviral vector or incubated with THP-1 derived macrophages. Oil red O and HE staining were performed to measure the size of atherosclerotic plaques in ApoE-/- mice. Immunofluorescence was employed to show the expression of target proteins in aorta. [3H] labeled cholesterol was performed to examine the efficiency of cholesterol efflux and reverse cholesterol transport (RCT) both in vivo and vitro. Western blot and qPCR were used to quantify target proteins both in vivo and vitro. ELISA detected the levels of pro-inflammatory cytokines in mouse peritoneal macrophage. RESULTS: Our data showed that Ang-1 augmented atherosclerotic plaques formation and inhibited cholesterol efflux. The binding of Ang-1 to Tie2 resulted in downregulation of LXRα, ABCA1 and ABCG1 expression via inhibiting the translocation of TFE3 into nucleus. In addition, Ang-1 decreased serum HDL-C levels and reduced reverse cholesterol transport (RCT) in ApoE-/- mice. Furthermore, Ang-1 induced lipid accumulation followed by increasing TNF-α, IL-6, IL-1ß,and MCP-1 produced by MPMs, as well as inducing M1 phenotype macrophage marker iNOS and CD86 expression in aorta of ApoE-/- mice. CONCLUSION: Ang-1 has an adverse effect on cholesterol efflux by decreasing the expression of ABCA1 and ABCG1 via Tie2/TFE3/LXRα pathway, thereby promoting inflammation and accelerating atherosclerosis progression.


Assuntos
Angiopoietina-1/metabolismo , Aterosclerose/metabolismo , Colesterol/metabolismo , Inflamação/metabolismo , Transdução de Sinais/imunologia , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Angiopoietina-1/genética , Animais , Aterosclerose/imunologia , Aterosclerose/patologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Modelos Animais de Doenças , Vetores Genéticos/genética , Humanos , Inflamação/imunologia , Inflamação/patologia , Lentivirus/genética , Receptores X do Fígado/metabolismo , Masculino , Camundongos , Camundongos Knockout para ApoE , Receptor TIE-2/metabolismo , Células THP-1 , Transfecção
4.
Eur J Pharmacol ; 884: 173408, 2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-32739175

RESUMO

Lipoprotein lipase (LPL) plays a central role in hydrolyzing triglyceride and its deficiency leads to atherosclerosis. Artesunate (ART), a derivative of artemisinin, has been demonstrated that ART reduces the formation of atherosclerotic plaques. However, it remains unclear whether ART-alleviated atherosclerotic lesion is involved in regulating lipid metabolism. ApoE-/- mice were fed a high-fat diet to form atherosclerotic plaques and then injected with artesunate or not. Oil Red O, HE and Masson staining were performed to assess atherosclerotic plaques. Both Western blot and qRT-PCR were applied to detect protein expression. The Luciferase reporter gene and Chromatin immunoprecipitation assays were used to assess the interaction between proteins. Immunofluorescence assay was performed to show the localization of target proteins. In vitro, our data shown that ART increased LPL expression and inhibition of NRF2 blocked the binding of TCF7L2 to LPL promoter region in VSMCs. Downregulated Klf2 could decrease the nuclear enrichment of NRF2, TCF7L2 and LPL expression. In vivo, ART decreased atherosclerotic plaque formation and increased VSMC counts and LPL expression within atherosclerotic plaques. We observed the reduced tendency of serum lipids, and increased in serum LPL activity in mice. In support of vitro data, the markedly increased KLF2, TCF7L2 and LPL expression have been detected in aorta. Our study suggests that ART may be a novel therapeutic drug for inhibition of atherosclerotic plaque formation. The molecular mechanism may involve in upregulation of LPL expression via the KLF2/NRF2/TCF7L2 pathway in VSMCs.


Assuntos
Artesunato/farmacologia , Aterosclerose/prevenção & controle , Fatores de Transcrição Kruppel-Like/metabolismo , Lipase Lipoproteica/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 2 Semelhante ao Fator 7 de Transcrição/metabolismo , Animais , Aorta/efeitos dos fármacos , Aorta/enzimologia , Aorta/patologia , Aterosclerose/enzimologia , Aterosclerose/genética , Aterosclerose/patologia , Células Cultivadas , Dieta Hiperlipídica , Modelos Animais de Doenças , Fatores de Transcrição Kruppel-Like/genética , Lipídeos/sangue , Lipase Lipoproteica/genética , Masculino , Camundongos Knockout para ApoE , Músculo Liso Vascular/enzimologia , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/enzimologia , Miócitos de Músculo Liso/patologia , Fator 2 Relacionado a NF-E2/genética , Placa Aterosclerótica , Transdução de Sinais , Proteína 2 Semelhante ao Fator 7 de Transcrição/genética , Regulação para Cima
5.
Artigo em Inglês | MEDLINE | ID: mdl-31988050

RESUMO

BACKGROUND AND AIMS: Fargesin mainly functions in the improvement of lipid metabolism and the inhibition of inflammation, but the role of fargesin in atherogenesis and the molecular mechanisms have not been defined. We aimed to explore if and how fargesin affects atherosclerosis by regulating lipid metabolism and inflammatory response. METHODS AND RESULTS: ApoE-/- mice were fed a high-fat diet to form atherosclerotic plaques and then administrated with fargesin or saline via gavage. Oil Red O, HE and Masson staining were performed to assess atherosclerostic plaques in apoE-/- mice. [3H] labeled cholesterol was used to detect cholesterol efflux and reverse cholesterol transport (RCT) efficiency. Enzymatic methods were performed to analyze plasma lipid profile in apoE-/- mice. Immunohistochemistry was used to analyze macrophage infiltration. THP-1-derived macrophages were incubated with fargesin or not. Both Western blot and qRT-PCR were applied to detect target gene expression. Oil Red O staining was applied to examine lipid accumulation in THP-1-derived macrophages. ELISA and qRT-PCR were used to examine the levels of inflammatory mediotors. We found that fargesin reduced atherosclerotic lesions by elevating efficiency of RCT and decreasing inflammatory response via upregulation of ABCA1 and ABCG1 expression in apoE-/- mice. Further, fargesin reduced lipid accumulation in THP-1-derived macrophages. Besides, fargesin increased phosphorylation of CEBPα in Ser21 and then upregulated LXRα, ABCA1 and ABCG1 expression in THP-1-derived macrophages. In addition, fargesin could reduce ox-LDL-induced inflammatory response by inactivation of the TLR4/NF-κB pathway. CONCLUSION: These results suggest that fargesin inhibits atherosclerosis by promoting RCT process and reducing inflammatory response via CEBPαS21/LXRα and TLR4/NF-κB pathways, respectively.


Assuntos
Aterosclerose/tratamento farmacológico , Benzodioxóis/administração & dosagem , Colesterol/metabolismo , Lignanas/administração & dosagem , Metabolismo dos Lipídeos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Administração Oral , Animais , Aterosclerose/imunologia , Aterosclerose/metabolismo , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Knockout para ApoE , NF-kappa B/metabolismo , Transdução de Sinais/imunologia , Células THP-1 , Receptor 4 Toll-Like/metabolismo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/imunologia
6.
Atherosclerosis ; 278: 250-258, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30340109

RESUMO

Pregnancy-associated plasma protein-A (PAPP-A), a member of the metzincin metalloproteinase superfamily, can enhance local insulin-like growth factor (IGF) bioavailability through proteolytic cleavage of three IGF binding proteins. In patients with coronary atherosclerosis disease (CAD), elevated PAPP-A levels are significantly associated with a higher risk of cardiovascular events. Accumulating evidence indicates that this protease exerts a proatherogenic effect by altering a variety of pathological processes involved in atherosclerosis, including lipid accumulation, vascular inflammation, endothelial dysfunction, vascular smooth muscle cell proliferation and migration, plaque stability, and thrombus formation. Moreover, blockade of its proteolytic activity by stanniocalcin or microRNAs is protective against atherosclerosis development. In this review, we summarized the latest advances regarding the roles of PAPP-A in the pathogenesis of atherosclerosis with an emphasis on its diagnostic and prognostic values in CAD.


Assuntos
Aterosclerose/metabolismo , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Proteína Plasmática A Associada à Gravidez/genética , Animais , Biomarcadores/metabolismo , Movimento Celular , Proliferação de Células , Colesterol/metabolismo , Glicoproteínas/farmacologia , Humanos , Lipídeos/química , MicroRNAs/metabolismo , Músculo Liso Vascular/metabolismo , Proteína Plasmática A Associada à Gravidez/metabolismo , Prognóstico , Transdução de Sinais , Trombose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA