Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Mol Cancer ; 17(1): 69, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29510730

RESUMO

BACKGROUND: Metabolic plasticity has been increasingly thought to be a determinant of tumor growth and metastasis. MACC1, a transcriptional regulator of MET, was recognized as an oncogene in gastric cancer (GC); however, its transcriptional or post-translational regulation was not clear. We previously reported the metabolic role of MACC1 in glycolysis to promote GC progression. MACC1-AS1 is the antisense lncRNA of MACC1, yet its function was previously unknown. METHODS: We profiled and analyzed the expression of MACC1-AS1 utilizing the TCGA database as well as in situ hybridization using 123 pairs of GC tissues and matched adjacent normal gastric mucosa tissues (ANTs). The biological role of MACC1-AS1 in cell growth and metastasis was determined by performing in vitro and in vivo functional experiments. Glycolysis and antioxidant capabilities were assayed to examine its metabolic function. Further, the specific regulatory effect of MACC1-AS1 on MACC1 was explored transcriptionally and post-transcriptionally. RESULTS: MACC1-AS1 was shown to be expressed significantly higher in GC tissues than in ANTs, which predicted poor prognosis in GC patients. MACC1-AS1 promoted GC cell proliferation and inhibited cell apoptosis under metabolic stress. Mechanistically, MACC1-AS1 stabilized MACC1 mRNA and post-transcriptionally augmented MACC1 expression. Further, MACC1-AS1 was shown to mediate metabolic plasticity through MACC1 upregulation and subsequent enhanced glycolysis and anti-oxidative capabilities, and this was suggested to be coordinated by the AMPK/Lin28 pathway. CONCLUSIONS: Elevated expression of MACC1-AS1 in gastric cancer tissues is linked to poor prognosis and promotes malignant phenotype upon cancer cells. MACC1-AS1 is elevated under metabolic stress and facilitates metabolic plasticity by promoting MACC1 expression through mRNA stabilization. Our study implicates lncRNA MACC1-AS1 as a valuable biomarker for GC diagnosis and prognosis.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , RNA Antissenso , RNA Longo não Codificante , Proteínas de Ligação a RNA/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Fatores de Transcrição/genética , Adulto , Idoso , Biomarcadores Tumorais , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Progressão da Doença , Metabolismo Energético , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Metástase Neoplásica , Estadiamento de Neoplasias , Prognóstico , Modelos de Riscos Proporcionais , Estabilidade de RNA , Transdução de Sinais , Neoplasias Gástricas/mortalidade , Neoplasias Gástricas/patologia , Estresse Fisiológico , Transativadores
2.
Mol Cancer ; 16(1): 79, 2017 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-28407774

RESUMO

Cancer cells are frequently confronted with metabolic stress in tumor microenvironments due to their rapid growth and limited nutrient supply. Metabolic stress induces cell death through ROS-induced apoptosis. However, cancer cells can adapt to it by altering the metabolic pathways. AMPK and AKT are two primary effectors in response to metabolic stress: AMPK acts as an energy-sensing factor which rewires metabolism and maintains redox balance. AKT broadly promotes energy production in the nutrient abundance milieu, but the role of AKT under metabolic stress is in dispute. Recent studies show that AMPK and AKT display antagonistic roles under metabolic stress. Metabolic stress-induced ROS signaling lies in the hub between metabolic reprogramming and redox homeostasis. Here, we highlight the cross-talk between AMPK and AKT and their regulation on ROS production and elimination, which summarizes the mechanism of cancer cell adaptability under ROS stress and suggests potential options for cancer therapeutics.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico , Animais , Progressão da Doença , Metabolismo Energético , Homeostase , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Oxirredução , Fosforilação , Ligação Proteica , Transdução de Sinais
3.
Front Oncol ; 14: 1298389, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903714

RESUMO

Third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) are highly effective against tumors harboring the T790M mutation. However, patients treated with these inhibitors ultimately develop resistance, and the most common mechanism is the emergence of the EGFR C797S mutation. Few treatment regimens have been reported for this condition. In this report, we present a successful combination treatment with the programmed cell death 1 (PD-1) inhibitor sintilimab, anti-vascular endothelial growth factor (VEGF) therapy, and chemotherapy with pemetrexed and cisplatin in a patient with non-small cell lung cancer (NSCLC) who developed acquired resistance with EGFR 19 exon deletion (19Del)/T790M/cis-C797S mutation following progression with ametinib therapy. This regimen was well tolerated, and the patient has remained progression-free for 15 months. Our case provides clinical evidence that the combination of PD-1 inhibitor, anti-VEGF therapy, and chemotherapy may be an efficacious therapeutic strategy for NSCLC patients with acquired EGFR 19Del/T790M/cis-C797S mutation resistance following progression with EGFR TKI therapy.

4.
Oncogene ; 38(23): 4637-4654, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30742067

RESUMO

Chemotherapy is the preferred treatment for advanced stage gastric cancer (GC) patients and chemotherapy resistance is the major obstacle to effective cancer therapy. Increasing evidence suggests that mesenchymal stem cells (MSCs) make important contributions to development of drug resistance. However, the underlying mechanism remains elusive. In this study, we discovered that abundant MSCs in tumor tissues predicted a poor prognosis in GC patients. MSCs promoted stemness and chemoresistance in GC cells through fatty acid oxidation (FAO) in vitro and in vivo. Mechanically, transforming growth factor ß1 (TGF-ß1) secretion by MSCs activated SMAD2/3 through TGF-ß receptors and induced long non-coding RNA (lncRNA) MACC1-AS1 expression in GC cells, which promoted FAO-dependent stemness and chemoresistance through antagonizing miR-145-5p. Moreover, pharmacologic inhibition of FAO with etomoxir (ETX) attenuated MSC-induced FOLFOX regiment resistance in vivo. These results suggest that FAO plays an important role in MSC-mediated stemness and chemotherapy resistance in GC and FAO inhibitors in combination with chemotherapeutic drugs present as a promising strategy to overcome chemoresistance.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Ácidos Graxos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Neoplásicas/patologia , RNA Longo não Codificante/fisiologia , Neoplasias Gástricas , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Células Cultivadas , Feminino , Fluoruracila/administração & dosagem , Fluoruracila/uso terapêutico , Regulação Neoplásica da Expressão Gênica , Humanos , Leucovorina/uso terapêutico , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Células-Tronco Neoplásicas/metabolismo , Compostos Organoplatínicos/uso terapêutico , Oxirredução , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Transativadores , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética
5.
Am J Cancer Res ; 8(5): 763-777, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29888101

RESUMO

The tumor microenvironment (TME) is a key factor regulating tumor cell invasion and metastasis. The effects of biochemical factors such as stromal cells, immune cells, and cytokines have been previously investigated. Owing to restrictions by the natural barrier between physical and biochemical disciplines, the role of physical factors in tumorigenesis is unclear. However, with the emergence of interdisciplinary mechanobiology and continuous advancements therein in the past 30 years, studies on the effect of physical properties such as hardness or shear stress on tumorigenesis and tumor progression are constantly renewing our understanding of mechanotransduction mechanisms. Shear stress, induced by liquid flow, is known to actively participate in proliferation, apoptosis, invasion, and metastasis of tumor cells. The present review discusses the progress and achievements in studies on tumor fluid microenvironment in recent years, especially fluid shear stress, on tumor metastasis, and presents directions for future study.

6.
Oncol Lett ; 15(4): 5405-5411, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29556292

RESUMO

Ferroptosis is an iron-dependent and peroxidation-driven form of cell death associated with multiple metabolic disorders and disrupted homeostasis. A number of metabolic processes and homeostasis are affected by ferroptosis. The molecules that regulate ferroptosis are involved in metabolic pathways that regulate cysteine exploitation, glutathione state, nicotinamide adenine dinucleotide phosphate function, lipid peroxidation and iron homeostasis. The present review summarizes the metabolic networks involved in ferroptosis based on previous studies, and discusses the function of ferroptosis in pathological processes, including cancer. Finally, the clinical significance of ferroptosis is highlighted, to provide evidence for further studies.

7.
Adv Healthc Mater ; 7(23): e1800118, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30345648

RESUMO

Targeted therapy can improve the accuracy of diagnosis and treatment in the field of cancer management. Cellular surface engineering can enhance cell functions via mounting functional molecules onto cellular membranes. A novel amphiphilic hyperbranched polymer (AHP) conjugated with oleic acid (OA) and tumor-targeted ligand folic acid (FA) is employed. The lipophilic chain can self-assemble and infuse with the cytomembrane of bone marrow mesenchymal stem cells (BMSCs) with the end of FA left on the outside for targeting. The polymer tailored BMSCs can enhance tumor tropism in gastric cancer. BMSCs are characterized by the low immunogenicity and tumor tropism, which makes them promising targeting carriers. Regarding the integrated advantages of these two vectors, it is demonstrated that the functional amphiphilic AHP-OA-FA enhances the tumor tropism of BMSCs. Flow cytometry, standard MTT assay, and wound-healing assay show that AHP-OA-FA has no influence on CD expression, proliferative capacity, and cell motility of BMSCs, respectively. Furthermore, in vitro transwell assay and ex vivo fluorescence image verify that AHP-OA-FA enhances tumor tropism of BMSCs compared to BMSCs and AHP-OA-Rhodamine B-BMSCs. Finally, histological analysis demonstrates that AHP-OA-FA causes no damage to major organs. The results of this study suggest that living BMSCs self-assembled with a polymer might be a promising vehicle for targeted delivery to cancer cells.


Assuntos
Células-Tronco Mesenquimais/metabolismo , Polímeros/química , Animais , Células da Medula Óssea/citologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ácido Fólico/química , Ácido Fólico/farmacologia , Humanos , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Camundongos Nus , Neoplasias/metabolismo , Neoplasias/patologia , Ácido Oleico/química , Ácido Oleico/farmacologia , Imagem Óptica , Ratos , Ratos Sprague-Dawley , Rodaminas/química
8.
Theranostics ; 8(19): 5452-5468, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30555557

RESUMO

Omental metastasis occurs frequently in gastric cancer (GC) and is considered one of the major causes of gastric cancer-related mortality. Recent research indicated that omental adipocytes might mediate this metastatic predilection. Phosphatidylinositol transfer protein, cytoplasmic 1 (PITPNC1) was identified to have a crucial role in metastasis. However, whether PITPNC1 participates in the interaction between adipocytes and GC omental metastasis is unclear. Methods: We profiled and analyzed the expression of PITPNC1 through analysis of the TCGA database as well as immunohistochemistry staining using matched GC tissues, adjacent normal gastric mucosa tissues (ANTs), and omental metastatic tissues. The regulation of PITPNC1 by adipocytes was explored by co-culture systems. By using both PITPNC1 overexpression and silencing methods, the role of PITPNC1 in anoikis resistance and metastasis was determined through in vitro and in vivo experiments. Results: PITPNC1 was expressed at higher rates in GC tissues than in ANTs; notably, it was higher in omental metastatic lesions. Elevated expression of PITPNC1 predicted higher rates of omental metastasis and a poor prognosis. PITPNC1 promoted anoikis resistance through fatty acid metabolism by upregulating CD36 and CPT1B expression. Further, PITPNC1 was elevated by adipocytes and facilitated GC omental metastasis. Lastly, in vivo studies showed that PITPNC1 was a therapeutic indicator of fatty acid oxidation (FAO) inhibition. Conclusion: Elevated expression of PITPNC1 in GC is correlated with an advanced clinical stage and a poor prognosis. PITPNC1 promotes anoikis resistance through enhanced FAO, which is regulated by omental adipocytes and consequently facilitates GC omental metastasis. Targeting PITPNC1 might present a promising strategy to treat omental metastasis.


Assuntos
Adipócitos/patologia , Ácidos Graxos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Neoplasias Peritoneais/fisiopatologia , Neoplasias Peritoneais/secundário , Neoplasias Gástricas/patologia , Neoplasias Gástricas/fisiopatologia , Adenocarcinoma/patologia , Adenocarcinoma/fisiopatologia , Animais , Anoikis , Antígenos CD36/biossíntese , Carnitina O-Palmitoiltransferase/biossíntese , Linhagem Celular Tumoral , Sobrevivência Celular , Técnicas de Cocultura , Modelos Animais de Doenças , Expressão Gênica , Inativação Gênica , Humanos , Imuno-Histoquímica , Proteínas de Membrana Transportadoras/análise , Proteínas de Membrana Transportadoras/genética , Camundongos Nus , Modelos Teóricos , Regulação para Cima
9.
Neoplasia ; 19(12): 1022-1032, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29144989

RESUMO

BACKGROUND: Ferroptosis is a recently discovered form of iron-dependent nonapoptotic cell death. It is characterized by loss of the activity of the lipid repair enzyme, glutathione peroxidase 4 (GPX4), and accumulation of lethal reactive lipid oxygen species. However, we still know relatively little about ferroptosis and its molecular mechanism in gastric cancer (GC) cells. Here, we demonstrate that erastin, a classic inducer of ferroptosis, induces this form of cell death in GC cells and that cysteine dioxygenase 1 (CDO1) plays an important role in this process. METHODS: We performed quantitative real-time polymerase chain reaction, Western blotting, cell viability assay, reactive oxygen species (ROS) assay, glutathione assay, lipid peroxidation assay, RNAi and gene transfection, immunofluorescent staining, dual-luciferase reporter assay, transmission electron microscopy, and chromatin immunoprecipitation assay to study the regulation of ferroptosis in GC cells. Mouse xenograft assay was used to figure out the mechanism in vivo. RESULTS: Silencing CDO1 inhibited erastin-induced ferroptosis in GC cells both in vitro and in vivo. Suppression of CDO1 restored cellular GSH levels, prevented ROS generation, and reduced malondialdehyde, one of the end products of lipid peroxidation. In addition, silencing COO1 maintained mitochondrial morphologic stability in erastin-treated cells. Mechanistically, c-Myb transcriptionally regulated CDO1, and inhibition of CDO1 expression upregulated GPX4 expression. CONCLUSIONS: Our findings give a better understanding of ferroptosis and its molecular mechanism in GC cells, gaining insight into ferroptosis-mediated cancer treatment.


Assuntos
Cisteína Dioxigenase/metabolismo , Piperazinas/metabolismo , Neoplasias Gástricas/metabolismo , Animais , Biomarcadores , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cisteína Dioxigenase/genética , Modelos Animais de Doenças , Heme/metabolismo , Xenoenxertos , Humanos , Ferro/metabolismo , Camundongos , Modelos Biológicos , Proteínas Proto-Oncogênicas c-myb/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Neoplasias Gástricas/patologia
10.
Oncotarget ; 7(14): 18085-94, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-26919111

RESUMO

The neurotransmitter acetylcholine (ACh) promotes the growth and metastasis of several cancers via its M3 muscarinic receptor (M3R). Metastasis-associated in colon cancer-1 (MACC1) is an oncogene that is overexpressed in gastric cancer (GC) and plays an important role in GC progression, though it is unclear how MACC1 activity is regulated in GC. In this study, we demonstrated that ACh acts via M3Rs to promote GC cell invasion and migration as well as expression of several markers of epithelial-mesenchymal transition (EMT). The M3R antagonist darifenacin inhibited GC cell activity in both the presence and absence of exogenous ACh, suggesting GC cells secrete endogenous ACh, which then acts in an autocrine fashion to promote GC cell migration/invasion. ACh up-regulated MACC1 in GC cells, and MACC1 knockdown using siRNA attenuated the effects of ACh on GC cells. AMP-activated protein kinase (AMPK) served as an intermediate signal between ACh and MACC1. These findings suggest that ACh acts via a M3R/AMPK/MACC1 signaling pathway to promote GC cell invasion/migration, which provides insight into the mechanisms underlying GC growth and metastasis and may shed light on new targets for GC treatment.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Acetilcolina/metabolismo , Receptor Muscarínico M3/metabolismo , Neoplasias Gástricas/patologia , Fatores de Transcrição/metabolismo , Acetilcolina/farmacologia , Benzofuranos/farmacologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Humanos , Antagonistas Muscarínicos/farmacologia , Invasividade Neoplásica/genética , Pirrolidinas/farmacologia , Interferência de RNA , RNA Interferente Pequeno/genética , Receptor Muscarínico M3/antagonistas & inibidores , Transdução de Sinais , Transativadores , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA