Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 170
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(37): e2408716121, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39226360

RESUMO

Bacterial evolution, particularly in hospital settings, is leading to an increase in multidrug resistance. Understanding the basis for this resistance is critical as it can drive discovery of new antibiotics while allowing the clinical use of known antibiotics to be optimized. Here, we report a photoactive chemical probe for superresolution microscopy that allows for the in situ probing of antibiotic-induced structural disruption of bacteria. Conjugation between a spiropyran (SP) and galactose via click chemistry produces an amphiphilic photochromic glycoprobe, which self-assembles into glycomicelles in water. The hydrophobic inner core of the glycomicelles allows encapsulation of antibiotics. Photoirradiation then serves to convert the SP to the corresponding merocyanine (MR) form. This results in micellar disassembly allowing for release of the antibiotic in an on-demand fashion. The glycomicelles of this study adhere selectively to the surface of a Gram-negative bacterium through multivalent sugar-lectin interaction. Antibiotic release from the glycomicelles then induces membrane collapse. This dynamic process can be imaged in situ by superresolution spectroscopy owing to the "fluorescence blinking" of the SP/MR photochromic pair. This research provides a high-precision imaging tool that may be used to visualize how antibiotics disrupt the structural integrity of bacteria in real time.


Assuntos
Antibacterianos , Benzopiranos , Indóis , Antibacterianos/farmacologia , Antibacterianos/química , Benzopiranos/química , Benzopiranos/farmacologia , Indóis/química , Micelas , Nitrocompostos/química , Pirimidinonas/química , Pirimidinonas/farmacologia
2.
Chem Rev ; 124(5): 2699-2804, 2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38422393

RESUMO

The ability to gain spatiotemporal information, and in some cases achieve spatiotemporal control, in the context of drug delivery makes theranostic fluorescent probes an attractive and intensely investigated research topic. This interest is reflected in the steep rise in publications on the topic that have appeared over the past decade. Theranostic fluorescent probes, in their various incarnations, generally comprise a fluorophore linked to a masked drug, in which the drug is released as the result of certain stimuli, with both intrinsic and extrinsic stimuli being reported. This release is then signaled by the emergence of a fluorescent signal. Importantly, the use of appropriate fluorophores has enabled not only this emerging fluorescence as a spatiotemporal marker for drug delivery but also has provided modalities useful in photodynamic, photothermal, and sonodynamic therapeutic applications. In this review we highlight recent work on theranostic fluorescent probes with a particular focus on probes that are activated in tumor microenvironments. We also summarize efforts to develop probes for other applications, such as neurodegenerative diseases and antibacterials. This review celebrates the diversity of designs reported to date, from discrete small-molecule systems to nanomaterials. Our aim is to provide insights into the potential clinical impact of this still-emerging research direction.


Assuntos
Corantes Fluorescentes , Medicina de Precisão , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Fluorescência , Nanomedicina Teranóstica
3.
J Am Chem Soc ; 146(30): 21017-21024, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39029108

RESUMO

The devastating COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has made society acutely aware of the urgency in developing effective techniques to timely monitor the outbreak of previously unknown viral species as well as their mutants, which could be even more lethal and/or contagious. Here, we report a fluorogenic sensor array consisting of peptides truncated from the binding domain of human angiotensin-converting enzyme 2 (hACE2) for SARS-CoV-2. A set of five fluorescently tagged peptides were used to construct the senor array in the presence of different low-dimensional quenching materials. When orthogonally incubated with the wild-type SARS-CoV-2 and its variants of concern (VOCs), the fluorescence of each peptide probe was specifically recovered, and the different recovery rates provide a "fingerprint" characteristic of each viral strain. This, in turn, allows them to be differentiated from each other using principal component analysis. Interestingly, the classification result from our sensor array agrees well with the evolutionary relationship similarity of the VOCs. This study offers insight into the development of effective sensing tools for highly contagious viruses and their mutants based on rationally truncating peptide ligands from human receptors.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Corantes Fluorescentes , Peptídeos , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/química , SARS-CoV-2/enzimologia , SARS-CoV-2/isolamento & purificação , Humanos , Peptídeos/química , Peptídeos/metabolismo , Corantes Fluorescentes/química , COVID-19/virologia , COVID-19/diagnóstico , Técnicas Biossensoriais/métodos
4.
Chem Soc Rev ; 52(2): 601-662, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36149439

RESUMO

Chemical warfare agents (CWAs) are toxic chemicals that have been intentionally developed for targeted and deadly use on humans. Although intended for military targets, the use of CWAs more often than not results in mass civilian casualties. To prevent further atrocities from occurring during conflicts, a global ban was implemented through the chemical weapons convention, with the aim of eliminating the development, stockpiling, and use of CWAs. Unfortunately, because of their relatively low cost, ease of manufacture and effectiveness on mass populations, CWAs still exist in today's world. CWAs have been used in several recent terrorist-related incidents and conflicts (e.g., Syria). Therefore, they continue to remain serious threats to public health and safety and to global peace and stability. Analytical methods that can accurately detect CWAs are essential to global security measures and for forensic analysis. Small molecule fluorescent probes have emerged as attractive chemical tools for CWA detection, due to their simplicity, ease of use, excellent selectivity and high sensitivity, as well as their ability to be translated into handheld devices. This includes the ability to non-invasively image CWA distribution within living systems (in vitro and in vivo) to permit in-depth evaluation of their biological interactions and allow potential identification of therapeutic countermeasures. In this review, we provide an overview of the various reported fluorescent probes that have been designed for the detection of CWAs. The mechanism for CWA detection, change in optical output and application for each fluorescent probe are described in detail. The limitations and challenges of currently developed fluorescent probes are discussed providing insight into the future development of this research area. We hope the information provided in this review will give readers a clear understanding of how to design a fluorescent probe for the detection of a specific CWA. We anticipate that this will advance our security systems and provide new tools for environmental and toxicology monitoring.


Assuntos
Substâncias para a Guerra Química , Humanos , Substâncias para a Guerra Química/análise , Corantes Fluorescentes
5.
Chem Soc Rev ; 52(3): 879-920, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36637396

RESUMO

Cancer remains as one of the most significant health problems, with approximately 19 million people diagnosed worldwide each year. Chemotherapy is a routinely used method to treat cancer patients. However, current treatment options lack the appropriate selectivity for cancer cells, are prone to resistance mechanisms, and are plagued with dose-limiting toxicities. As such, researchers have devoted their attention to developing prodrug-based strategies that have the potential to overcome these limitations. This tutorial review highlights recently developed prodrug strategies for cancer therapy. Prodrug examples that provide an integrated diagnostic (fluorescent, photoacoustic, and magnetic resonance imaging) response, which are referred to as theranostics, are also discussed. Owing to the non-invasive nature of light (and X-rays), we have discussed external excitation prodrug strategies as well as examples of activatable photosensitizers that enhance the precision of photodynamic therapy/photothermal therapy. Activatable photosensitizers/photothermal agents can be seen as analogous to prodrugs, with their phototherapeutic properties at a specific wavelength activated in the presence of disease-related biomarkers. We discuss each design strategy and illustrate the importance of targeting biomarkers specific to the tumour microenvironment and biomarkers that are known to be overexpressed within cancer cells. Moreover, we discuss the advantages of each approach and highlight their inherent limitations. We hope in doing so, the reader will appreciate the current challenges and available opportunities in the field and inspire subsequent generations to pursue this crucial area of cancer research.


Assuntos
Neoplasias , Fotoquimioterapia , Pró-Fármacos , Humanos , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Fotoquimioterapia/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Microambiente Tumoral
6.
J Am Chem Soc ; 145(16): 8917-8926, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37040584

RESUMO

Chemical tools capable of classifying multidrug-resistant bacteria (superbugs) can facilitate early-stage disease diagnosis and help guide precision therapy. Here, we report a sensor array that permits the facile phenotyping of methicillin-resistant Staphylococcus aureus (MRSA), a clinically common superbug. The array consists of a panel of eight separate ratiometric fluorescent probes that provide characteristic vibration-induced emission (VIE) profiles. These probes bear a pair of quaternary ammonium salts in different substitution positions around a known VIEgen core. The differences in the substituents result in varying interactions with the negatively charged cell walls of bacteria. This, in turn, dictates the molecular conformation of the probes and affects their blue-to-red fluorescence intensity ratios (ratiometric changes). Within the sensor array, the differences in the ratiometric changes for the probes result in "fingerprints" for MRSA of different genotypes. This allows them to be identified using principal component analysis (PCA) without the need for cell lysis and nucleic acid isolation. The results obtained with the present sensor array agree well with those obtained using polymerase chain reaction (PCR) analysis.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Genótipo , Infecções Estafilocócicas/diagnóstico , Infecções Estafilocócicas/microbiologia , Antibacterianos
7.
J Am Chem Soc ; 145(31): 17377-17388, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37497917

RESUMO

The five-year survival rate of hepatocellular carcinoma (HCC) remains unsatisfactory. This reflects, in part, the paucity of effective methods that allow the target-specific diagnosis and therapy of HCC. Here, we report a strategy based on engineered human serum albumin (HSA) that permits the HCC-targeted delivery of diagnostic and therapeutic agents. Covalent cysteine conjugation combined with the exploitation of host-guest chemistry was used to effect the orthogonal functionalization of HSA with two functionally independent peptides. One of these peptides targets glypican-3 (GPC-3), an HCC-specific biomarker, while the second reduces macrophage phagocytosis through immune-checkpoint stimulation. This orthogonally engineered HSA proved effective for the GPC-3-targeted delivery of near-infrared fluorescent and phototherapeutic agents, thus permitting target-specific optical visualization and photodynamic ablation of HCC in vivo. This study thus offers new insights into specificity-enhanced fluorescence-guided surgery and phototherapy of HCC through the orthogonal engineering of biocompatible proteins.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Neoplasias Hepáticas/metabolismo , Carcinoma Hepatocelular/terapia , Fototerapia/métodos , Albuminas , Albumina Sérica Humana , Macrófagos/metabolismo , Fagocitose
8.
Anal Chem ; 95(13): 5747-5753, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36951754

RESUMO

Drug-induced liver injury (DILI) is a major clinical issue associated with the majority of commercial drugs. During DILI, the peroxynitrite (ONOO-) level is upregulated in the liver. However, traditional methods are unable to timely monitor the dynamic changes of the ONOO- level during DILI in vivo. Therefore, ONOO--activated near-infrared (NIR) fluorescent probes with high sensitivity and selectivity are key to the early diagnosis of DILI in situ. Herein, we report a novel ONOO--responsive NIR fluorescent probe, QCy7-DP, which incorporates a donor-dual-acceptor π-electron cyanine skeleton with diphenyl phosphinate. The ONOO--mediated highly selective hydrolytic cleavage via an addition-elimination pathway of diphenyl phosphinate produced the deprotonated form of QCy7 in physiological conditions with a distinctive extended conjugated π-electron system and ∼200-fold enhancement in NIR fluorescence emission at 710 nm. Moreover, the probe QCy7-DP was successfully used for the imaging of the endogenous and exogenous ONOO- concentration changes in living cells. Importantly, in vivo fluorescence imaging tests demonstrated that the probe can effectively detect the endogenous generation of ONOO- in an acetaminophen (APAP)-induced liver injury mouse model. This study provides insight into the design of highly selective NIR fluorescent probes suitable for spatiotemporal monitoring of ONOO- under different pathological conditions.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Corantes Fluorescentes , Animais , Camundongos , Corantes Fluorescentes/metabolismo , Ácido Peroxinitroso/metabolismo , Compostos de Bifenilo , Imagem Óptica , Doença Hepática Induzida por Substâncias e Drogas/diagnóstico por imagem
9.
Org Biomol Chem ; 21(22): 4661-4666, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37212349

RESUMO

Peroxynitrite (ONOO-) is an important oxygen/nitrogen reactive species implicated in a number of physiological and pathological processes. However, due to the complexity of the cellular micro-environment, the sensitive and accurate detection of ONOO- remains a challenging task. Here, we developed a long-wavelength fluorescent probe based on the conjugation between a TCF scaffold and phenylboronate; the resulting conjugate is capable of supramolecular host-guest assembly with human serum albumin (HSA) for the fluorogenic sensing of ONOO-. The probe exhibited an enhanced fluorescence over a low concentration range of ONOO- (0-9.6 µM), whist the fluorescence was quenched when the concentration of ONOO- exceeded 9.6 µM. In addition, when human serum albumin (HSA) was added, the initial fluorescence of the probe was significantly enhanced, which enabled the more sensitive detection of low-concentrations of ONOO- in aqueous buffer solution and in cells. The molecular structure of the supramolecular host-guest ensemble was determined using small-angle X-ray scattering.


Assuntos
Corantes Fluorescentes , Ácido Peroxinitroso , Humanos , Ácido Peroxinitroso/química , Corantes Fluorescentes/química , Espécies Reativas de Oxigênio , Estrutura Molecular , Limite de Detecção
10.
J Am Chem Soc ; 144(16): 7382-7390, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35421310

RESUMO

Deferasirox, an FDA-approved iron chelator, has gained increasing attention for use in anticancer and antimicrobial applications. Recent efforts by our group led to the identification of this core as an easy-to-visualize aggregation-induced emission platform, or AIEgen, that provides a therapeutic effect equivalent to deferasirox (J. Am. Chem. Soc. 2021, 143, 3, 1278-1283). However, the emission wavelength of the first-generation system overlapped with that of Syto9, a green emissive dye used to indicate live cells. Here, we report a library of deferasirox derivatives with various fluorescence emission profiles designed to overcome this limitation. We propose referring to systems that show promise as both therapeutic and optical imaging agents as "illuminoceuticals". The color differences between the derivatives were observable to the unaided eye (solid- and solution-state) and were in accord with the Commission Internationale de L'Eclairage (CIE) chromaticity diagram 1913. Each fluorescent derivative successfully imaged the respective spherical and rod shapes of methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa. They also displayed iron-dependent antibiotic activity. Three derivatives, ExNMe2 (3), ExTrisT (11), and ExDCM (13), display emission features that are sufficiently distinct so as to permit the multiplex (triplex) imaging of both MRSA and P. aeruginosa via stimulated emission depletion microscopy. The present deferasirox derivatives allowed for the construction of a multi-fluorophore sensor array. This array enabled the successful discrimination between Gram-positive/Gram-negative and drug-sensitive/drug-resistant bacteria. Antibiotic sensitivity and drug-resistant mutants from clinically isolated strains could also be identified and differentiated.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Deferasirox/farmacologia , Fluorescência , Quelantes de Ferro/farmacologia , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa
11.
J Am Chem Soc ; 144(1): 174-183, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34931825

RESUMO

Changes in adenosine triphosphate (ATP) and peroxynitrite (ONOO-) concentrations have been correlated in a number of diseases including ischemia-reperfusion injury and drug-induced liver injury. Herein, we report the development of a fluorescent probe ATP-LW, which enables the simultaneous detection of ONOO- and ATP. ONOO- selectively oxidizes the boronate pinacol ester of ATP-LW to afford the fluorescent 4-hydroxy-1,8-naphthalimide product NA-OH (λex = 450 nm, λem = 562 nm or λex = 488 nm, λem = 568 nm). In contrast, the binding of ATP to ATP-LW induces the spirolactam ring opening of rhodamine to afford a highly emissive product (λex = 520 nm, λem = 587 nm). Due to the differences in emission between the ONOO- and ATP products, ATP-LW allows ONOO- levels to be monitored in the green channel (λex = 488 nm, λem = 500-575 nm) and ATP concentrations in the red channel (λex = 514 nm, λem = 575-650 nm). The use of ATP-LW as a combined ONOO- and ATP probe was demonstrated using hepatocytes (HL-7702 cells) in cellular imaging experiments. Treatment of HL-7702 cells with oligomycin A (an inhibitor of ATP synthase) resulted in a reduction of signal intensity in the red channel and an increase in that of the green channel as expected for a reduction in ATP concentrations. Similar fluorescence changes were seen in the presence of SIN-1 (an exogenous ONOO- donor).


Assuntos
Ácido Peroxinitroso
12.
Chem Soc Rev ; 50(17): 9391-9429, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34232230

RESUMO

Chemical tools that allow the real-time monitoring of organ function and the visualisation of organ-related processes at the cellular level are of great importance in biological research. The upregulation/downregulation of specific biomarkers is often associated with the development of organ related diseases. Small-molecule fluorescent probes have the potential to create advances in our understanding of these disorders. Viable probes should be endowed with a number of key features that include high biomarker sensitivity, low limit of detection, fast response times and appropriate in vitro and in vivo biocompatibility. In this tutorial review, we discuss the development of probes that allow the targeting of organ related processes in vitro and in vivo. We highlight the design strategy that underlies the preparation of various promising probes, their optical response to key biomarkers, and proof-of-concept biological studies. The inherent drawbacks and limitations are discussed as are the current challenges and opportunities in the field. The hope is that this tutorial review will inspire the further development of small-molecule fluorescent probes that could aid the study of pathogenic conditions that contribute to organ-related diseases.


Assuntos
Corantes Fluorescentes , Biomarcadores , Fluorescência
13.
Chem Soc Rev ; 50(12): 7330-7332, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34109331

RESUMO

Correction for 'Fluorescent glycoconjugates and their applications' by Baptiste Thomas et al., Chem. Soc. Rev., 2020, 49, 593-641, DOI: 10.1039/C8CS00118A.

14.
J Am Chem Soc ; 143(3): 1278-1283, 2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33428381

RESUMO

Deferasirox, ExJade, is an FDA-approved iron chelator used for the treatment of iron overload. In this work, we report several fluorescent deferasirox derivatives that display unique photophysical properties, i.e., aggregation-induced emission (AIE), excited state intramolecular proton transfer, charge transfer, and through-bond and through-space conjugation characteristics in aqueous media. Functionalization of the phenol units on the deferasirox scaffold afforded the fluorescent responsive pro-chelator ExPhos, which enabled the detection of the disease-based biomarker alkaline phosphatase (ALP). The diagnostic potential of these deferasirox derivatives was supported by bacterial biofilm studies.


Assuntos
Deferasirox/análogos & derivados , Corantes Fluorescentes/química , Fosfatase Alcalina/análise , Antibacterianos/farmacologia , Proteínas de Bactérias/análise , Biofilmes/efeitos dos fármacos , Biomarcadores/análise , Cefoperazona/farmacologia , Deferasirox/farmacologia , Deferasirox/efeitos da radiação , Corantes Fluorescentes/farmacologia , Corantes Fluorescentes/efeitos da radiação , Luz , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/enzimologia , Staphylococcus aureus Resistente à Meticilina/fisiologia , Testes de Sensibilidade Microbiana , Microscopia Confocal , Microscopia de Fluorescência , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/fisiologia , Sulbactam/farmacologia
15.
Chem Soc Rev ; 49(2): 593-641, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31915764

RESUMO

Glycoconjugates and their applications as lectin ligands in biology have been thoroughly investigated in the past decades. Meanwhile, the intrinsic properties of such multivalent molecules were limited essentially to their ability to bind to their receptors with high selectivity and/or avidity. The present review will focus on multivalent glycoconjugates displaying an additional capability such as fluorescence properties not only for applications toward imaging of cancer cells and detection of proteins or pathogens but also for drug delivery systems toward targeted cancer therapy. This review is a collection of research articles discussed in the context of the structural features of fluorescent glycoconjugates organized according to their fluorescent core scaffold and with their representative applications.


Assuntos
Corantes Fluorescentes/química , Glicoconjugados/química , Antineoplásicos/administração & dosagem , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Fluorescência , Humanos , Neoplasias/tratamento farmacológico
16.
Chem Soc Rev ; 49(10): 2886-2915, 2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32226991

RESUMO

Central nervous system (CNS) neurodegeneration is defined by a complex series of pathological processes that ultimately lead to death. The precise etiology of these disorders remains unknown. Recent efforts show that a mechanistic understanding of the malfunctions underpinning disease progression will prove requisite in developing new treatments and cures. Transition metals and lanthanide ions display unique characteristics (i.e., magnetism, radioactivity, and luminescence), often with biological relevance, allowing for direct application in CNS focused imaging modalities. These techniques include positron emission tomography (PET), single-photon emission computed tomography (SPECT), magnetic resonance imaging (MRI), and luminescent-based imaging (LumI). In this Tutorial Review, we have aimed to highlight the various metal-based imaging techniques developed in the effort to understand the pathophysiological processes associated with neurodegeneration. Each section has been divided so as to include an introduction to the particular imaging technique in question. This is then followed by a summary of key demonstrations that have enabled visualization of a specific neuropathological biomarker. These strategies have either exploited the high binding affinity of a receptor for its corresponding biomarker or a specific molecular transformation caused by a target species, all of which produce a concomitant change in diagnostic signal. Advantages and disadvantages of each method with perspectives on the utility of molecular imaging agents for understanding the complexities of neurodegenerative disease are discussed.


Assuntos
Complexos de Coordenação/química , Indicadores e Reagentes/química , Metais/química , Doenças Neurodegenerativas/diagnóstico por imagem , Elementos de Transição/química , Animais , Humanos , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons , Tomografia Computadorizada de Emissão de Fóton Único
17.
Chem Soc Rev ; 49(15): 5110-5139, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32697225

RESUMO

In this tutorial review, we will explore recent advances in the construction and application of Förster resonance energy transfer (FRET)-based small-molecule fluorescent probes. The advantages of FRET-based fluorescent probes include: a large Stokes shift, ratiometric sensing and dual/multi-analyte responsive systems. We discuss the underlying energy donor-acceptor dye combinations and emphasise their applications for the detection or imaging of cations, anions, small neutral molecules, biomacromolecules, cellular microenvionments and dual/multi-analyte responsive systems.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Compostos Inorgânicos/análise , Animais , Transporte Biológico , Melhoramento Biomédico , Técnicas Biossensoriais , Linhagem Celular , Microambiente Celular , Humanos , Íons/análise , Potencial da Membrana Mitocondrial , Microscopia de Fluorescência , Neoplasias/diagnóstico por imagem , Imagem Óptica , Espectrometria de Fluorescência , Propriedades de Superfície
18.
Chem Soc Rev ; 49(12): 3726-3747, 2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32525153

RESUMO

Cancer is among the leading causes of death worldwide. Although a number of new treatment options have been developed in recent years, there remains a need for improved chemotherapies. The primary challenges facing new cancer drugs include: (1) improving patient quality of life, (2) overcoming drug resistance and (3) lowering reoccurrence rates. Major drawbacks of current chemotherapeutics arise from poor selectivity towards cancer cells, dose limiting toxicities, compliance-reducing side effects, and an inability to address resistance mechanisms. Chemotherapeutics that fail to achieve complete eradication of the disease can also lead to relapse and promote treatment resistance. New strategies to overcome these drawbacks include the use of transition metal chelators and ionophores to alter selectively the concentrations of iron, copper, and zinc in cancer cells. A number of metal chelators have successfully demonstrated cytotoxicity and targeted activity against drug-resistant cancer cells; several have proved effective against cancer stem cells, a significant cause of tumour reoccurrence. However, problems with formulation and targeting have been noted. Recent efforts have thus focused on the design of pro-chelators, inactive versions of chelators that are designed to be activated in the tumour. This is an appealing strategy that may potentially increase efficacy towards cancer-resistant malignant cells. This Tutorial Review summarizes recent progress involving transition metal chelators, pro-chelators, and ionophores as potential cancer chemotherapeutics. We will focus on the reported agents that are able to coordinate iron, copper, and zinc.


Assuntos
Quelantes/química , Ionóforos/química , Elementos de Transição/química , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Complexos de Coordenação/química , Complexos de Coordenação/uso terapêutico , Humanos , Neoplasias/tratamento farmacológico
19.
Molecules ; 26(23)2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34885660

RESUMO

Glycated haemoglobin (HbA1c) is a diagnostic biomarker for type 2 diabetes. Traditional analytical methods for haemoglobin (Hb) detection rely on chromatography, which requires significant instrumentation and is labour-intensive; consequently, miniaturized devices that can rapidly sense HbA1c are urgently required. With this research, we report on an aptamer-based sensor (aptasensor) for the rapid and selective electrochemical detection of HbA1c. Aptamers that specifically bind HbA1c and Hb were modified with a sulfhydryl and ferrocene group at the 3' and 5'-end, respectively. The modified aptamers were coated through sulfhydryl-gold self-assembly onto screen printed electrodes, producing aptasensors with built in electroactivity. When haemoglobin was added to the electrodes, the current intensity of the ferrocene in the sensor system was reduced in a concentration-dependent manner as determined by differential pulse voltammetry. In addition, electrochemical impedance spectroscopy confirmed selective binding of the analytes to the aptamer-coated electrode. This research offers new insight into the development of portable electrochemical sensors for the detection of HbA1c.


Assuntos
Aptâmeros de Nucleotídeos/metabolismo , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Compostos Ferrosos/química , Hemoglobinas Glicadas/metabolismo , Metalocenos/química , Biomarcadores/sangue , Diabetes Mellitus Tipo 2/sangue , Espectroscopia Dielétrica/métodos , Eletrodos , Hemoglobinas Glicadas/análise , Ouro/química , Humanos , Ligação Proteica , Compostos de Sulfidrila/química
20.
J Am Chem Soc ; 142(4): 1925-1932, 2020 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-31884796

RESUMO

As a result of their high specificity for their corresponding biological targets, peptides have shown significant potential in a range of diagnostic and therapeutic applications. However, their widespread use has been limited by their minimal cell permeability and stability in biological milieus. We describe here a hepta-dicyanomethylene-4H-pyran appended ß-cyclodextrin (DCM7-ß-CD) that acts as a delivery enhancing "host" for 1-bromonaphthalene-modified peptides, as demonstrated with peptide probes P1-P4. Interaction between the fluorescent peptides P1-P3 and DCM7-ß-CD results in the hierarchical formation of unique supramolecular architectures, which we term supramolecular-peptide-dots (Spds). Each Spd (Spd-1, Spd-2, and Spd-3) was found to facilitate the intracellular delivery of the constituent fluorescent probes (P1-P3), thus allowing spatiotemporal imaging of an apoptosis biomarker (caspase-3) and mitosis. Spd-4, incorporating the antimicrobial peptide P4, was found to provide an enhanced therapeutic benefit against both Gram-positive and Gram-negative bacteria relative to P4 alone. In addition, a fluorescent Spd-4 was prepared, which revealed greater bacterial cellular uptake compared to the peptide alone (P4-FITC) in E. coli. (ATCC 25922) and S. aureus (ATCC 25923). This latter observation supports the suggestion that the Spd platform reported here has the ability to facilitate the delivery of a therapeutic peptide and provides an easy-to-implement strategy for enhancing the antimicrobial efficacy of known therapeutic peptides. The present findings thus serve to highlight a new and effective supramolecular delivery approach that is potentially generalizable to overcome limitations associated with functional peptides.


Assuntos
Antibacterianos/farmacologia , Ciclodextrinas/química , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Imagem Óptica/métodos , Peptídeos/química , Antibacterianos/química , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA