Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Chem Rev ; 123(23): 13796-13865, 2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-37976052

RESUMO

Efforts to design devices emulating complex cognitive abilities and response processes of biological systems have long been a coveted goal. Recent advancements in flexible electronics, mirroring human tissue's mechanical properties, hold significant promise. Artificial neuron devices, hinging on flexible artificial synapses, bioinspired sensors, and actuators, are meticulously engineered to mimic the biological systems. However, this field is in its infancy, requiring substantial groundwork to achieve autonomous systems with intelligent feedback, adaptability, and tangible problem-solving capabilities. This review provides a comprehensive overview of recent advancements in artificial neuron devices. It starts with fundamental principles of artificial synaptic devices and explores artificial sensory systems, integrating artificial synapses and bioinspired sensors to replicate all five human senses. A systematic presentation of artificial nervous systems follows, designed to emulate fundamental human nervous system functions. The review also discusses potential applications and outlines existing challenges, offering insights into future prospects. We aim for this review to illuminate the burgeoning field of artificial neuron devices, inspiring further innovation in this captivating area of research.


Assuntos
Eletrônica , Sinapses , Humanos , Sinapses/fisiologia , Neurônios
2.
Environ Res ; 231(Pt 2): 116090, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37207737

RESUMO

COVID-19 pandemic appeared summer surge in 2022 worldwide and this contradicts its seasonal fluctuations. Even as high temperature and intense ultraviolet radiation can inhibit viral activity, the number of new cases worldwide has increased to >78% in only 1 month since the summer of 2022 under unchanged virus mutation influence and control policies. Using the attribution analysis based on the theoretical infectious diseases model simulation, we found the mechanism of the severe COVID-19 outbreak in the summer of 2022 and identified the amplification effect of heat wave events on its magnitude. The results suggest that approximately 69.3% of COVID-19 cases this summer could have been avoided if there is no heat waves. The collision between the pandemic and the heatwave is not an accident. Climate change is leading to more frequent extreme climate events and an increasing number of infectious diseases, posing an urgent threat to human health and life. Therefore, public health authorities must quickly develop coordinated management plans to deal with the simultaneous occurrence of extreme climate events and infectious diseases.


Assuntos
COVID-19 , Doenças Transmissíveis , Humanos , Pandemias , Raios Ultravioleta , COVID-19/epidemiologia , Temperatura Alta , Doenças Transmissíveis/epidemiologia , Mudança Climática
3.
J Clin Lab Anal ; 36(8): e24584, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35792028

RESUMO

BACKGROUND: The development of cardiac fibrosis involves the activation of cardiac fibroblasts (CFs) and their differentiation into myofibroblasts, which leads to the disruption of the extracellular matrix network. In the past few years, microRNAs (miRNA) have been described as potential targets for treating cardiac diseases. Although miR-338-3p has been shown to participate in the development of carcinoma, whether it affects cardiac fibrosis is unclear. METHODS: We examined the expression profiles of microRNAs in left ventricular samples of heart failure mice established by thoracic aortic constriction (TAC). Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to detect the expression of miR-338-3p. CCK-8 assay/Transwell migration assay was used to measure the proliferation rate/migration of CFs. Luciferase reporter gene assay was used to test the binding between miR-338-3p and FGFR2. RESULTS: This study demonstrated that miR-338-3p was significantly decreased in thoracic aortic constriction mice. Cardiac miR-338-3p amounts were also reduced in patients with dilated cardiomyopathy (DCM). Interestingly, miR-338-3p overexpression inhibited α-SMA, COL1A1, and COL3A1 expression, as well as cell proliferation and migration in CFs. Bioinformatics analysis and dual-luciferase reporter assays revealed FGFR2 was targeted by miR-338-3p, whose antifibrotic effect could be alleviated by overexpression of FGFR2. Moreover, in DCM cases, serum miR-338-3p levels were markedly elevated in individuals with worse outcomes. CONCLUSIONS: The present study provides evidence that miR-338-3p suppresses cardiac fibroblast activation, proliferation, and migration by directly targeting FGFR2 in mice. Besides, serum miR-338-3p might constitute a potential prognostic biomarker of dilated cardiomyopathy.


Assuntos
Cardiomiopatia Dilatada , MicroRNAs , Animais , Proliferação de Células/genética , Fibrose , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos
4.
Int J Neurosci ; 128(12): 1180-1187, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29792379

RESUMO

The S-100ß levels are associated with a variety of acute disorders and other chronic diseases, such as head injury, stroke, metastatic melanoma, cardiac surgery, bone fractures, burns and contusions. The serum S-100ß levels seem to increase with the volume of tissue damage. Higher serum S-100ß levels have been observed after brain damage or stroke. A number of studies have evidenced the clinical value of S-100ß in the diagnosis and prognosis of stroke while the S-100ß marker is elevated in the peripheral blood during the acute phase of stroke. However, the clinical usefulness of S-100ß biomarker in the diagnosis and prognosis of stroke has a limitation due to its low discriminating ability in stroke diagnosis and prognosis.


Assuntos
Subunidade beta da Proteína Ligante de Cálcio S100/sangue , Acidente Vascular Cerebral/sangue , Acidente Vascular Cerebral/diagnóstico , Animais , Biomarcadores/sangue , Humanos , Hemorragias Intracranianas/sangue , Neuroglia/metabolismo , Acidente Vascular Cerebral/patologia
5.
Glob Chang Biol ; 23(11): 4472-4482, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28585372

RESUMO

Carbon dioxide (CO2 ), methane (CH4 ), and nitrous oxide (N2 O) are the three most important greenhouse gases (GHGs), and all show large uncertainties in their atmospheric budgets. Soils of natural and managed ecosystems play an extremely important role in modulating their atmospheric abundance. Mechanisms underlying the exchange of these GHGs at the soil-atmosphere interface are often assumed to be exclusively microbe-mediated (M-GHGs). We argue that it is a widespread phenomenon for soil systems to produce GHGs through nonmicrobial pathways (NM-GHGs) based on a review of the available evidence accumulated over the past half century. We find that five categories of mechanistic process, including photodegradation, thermal degradation, reactive oxidative species (ROS) oxidation, extracellular oxidative metabolism (EXOMET), and inorganic chemical reactions, can be identified as accounting for their production. These pathways are intricately coupled among themselves and with M-GHGs production and are subject to strong influences from regional and global change agents including, among others, climate warming, solar radiation, and alterations of atmospheric components. Preliminary estimates have suggested that NM-GHGs could play key roles in contributing to budgets of GHGs in the arid regions, whereas their global importance would be enhanced with accelerated global environmental changes. Therefore, more research should be undertaken, with a differentiation between NM-GHGs and M-GHGs, to further elucidate the underlying mechanisms, to investigate the impacts of various global change agents, and to quantify their contributions to regional and global GHGs budgets. These efforts will contribute to a more complete understanding of global carbon and nitrogen cycling and a reduction in the uncertainty of carbon-climate feedbacks in the Earth system.


Assuntos
Gases de Efeito Estufa/química , Solo/química , Atmosfera , Dióxido de Carbono/química , Ecossistema , Efeito Estufa , Metano/química , Óxido Nitroso/química
6.
Oecologia ; 184(2): 351-361, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28401290

RESUMO

Abiotic drivers of environmental stress have been found to induce CAM expression (nocturnal carboxylation) in facultative CAM species such as Mesembryanthemum crystallinum. The role played by biotic factors such as competition with non-CAM species in affecting CAM expression, however, remains largely understudied. This research investigated the effects of salt and water conditions on the competition between M. crystallinum and the C3 grass Bromus mollis with which it is found to coexist in California's coastal grasslands. We also investigated the extent to which CAM expression in M. crystallinum was affected by the intensity of the competition with B. mollis. We found that M. crystallinum had a competitive advantage over B. mollis in drought and saline conditions, while B. mollis exerted strong competitive effects on M. crystallinum in access to light and soil nutrients in high water conditions. This strong competitive effect even outweighed the favorable effects of salt or water additions in increasing the biomass and productivity of M. crystallinum in mixture. Regardless of salt conditions, M. crystallinum did not switch to CAM photosynthesis in response to this strong competitive effect from B. mollis. Disturbance (i.e., grass cutting) reduced the competitive pressure by B. mollis and allowed for CAM expression in M. crystallinum when it was grown mixed with B. mollis. We suggest that moderate competition with other functional groups can enhance CAM expression in M. crystallinum, thereby affecting its plasticity and ability to cope with biological stress.


Assuntos
Mesembryanthemum/metabolismo , Fotossíntese , California , Plantas , Cloreto de Sódio , Estresse Fisiológico
7.
Opt Lett ; 40(23): 5506-9, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26625037

RESUMO

A simple and compact converter based on the dielectric metasurface is proposed for the transformation of Gaussian mode to Hermite-Gaussian and Laguerre-Gaussian modes. We establish the relationship between the phase of a desired mode and the local orientation of the optical axis based on the evolution of Pancharatnam-Berry phase on Poincaré sphere. By controlling the local orientation of the optical axis in the dielectric metasurface, we can achieve any desired higher-order laser mode.

8.
Nanomaterials (Basel) ; 14(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38607119

RESUMO

Current computing systems rely on Boolean logic and von Neumann architecture, where computing cells are based on high-speed electron-conducting complementary metal-oxide-semiconductor (CMOS) transistors. In contrast, ions play an essential role in biological neural computing. Compared with CMOS units, the synapse/neuron computing speed is much lower, but the human brain performs much better in many tasks such as pattern recognition and decision-making. Recently, ionic dynamics in oxide electrolyte-gated transistors have attracted increasing attention in the field of neuromorphic computing, which is more similar to the computing modality in the biological brain. In this review article, we start with the introduction of some ionic processes in biological brain computing. Then, electrolyte-gated ionic transistors, especially oxide ionic transistors, are briefly introduced. Later, we review the state-of-the-art progress in oxide electrolyte-gated transistors for ionic neuromorphic computing including dynamic synaptic plasticity emulation, spatiotemporal information processing, and artificial sensory neuron function implementation. Finally, we will address the current challenges and offer recommendations along with potential research directions.

9.
Nat Commun ; 15(1): 6840, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39122723

RESUMO

The world's oceans are under threat from the prevalence of heatwaves caused by climate change. Despite this, there is a lack of understanding regarding their impact on seawater oxygen levels - a crucial element in sustaining biological survival. Here, we find that heatwaves can trigger low-oxygen extreme events, thereby amplifying the signal of deoxygenation. By utilizing in situ observations and state-of-the-art climate model simulations, we provide a global assessment of the relationship between the two types of extreme events in the surface ocean (0-10 m). Our results show compelling evidence of a remarkable surge in the co-occurrence of marine heatwaves and low-oxygen extreme events. Hotspots of these concurrent stressors are identified in the study, indicating that this intensification is more pronounced in high-biomass regions than in those with relatively low biomass. The rise in the compound events is primarily attributable to long-term warming primarily induced by anthropogenic forcing, in tandem with natural internal variability modulating their spatial distribution. Our findings suggest the ocean is losing its breath under the influence of heatwaves, potentially experiencing more severe damage than previously anticipated.


Assuntos
Mudança Climática , Oceanos e Mares , Água do Mar , Água do Mar/química , Oxigênio , Modelos Climáticos , Temperatura Alta , Calor Extremo/efeitos adversos , Biomassa
10.
Adv Mater ; 36(25): e2400950, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38581284

RESUMO

Mixed conducting materials with both ionic and electronic conductivities have gained prominence in emerging applications. However, exploring material with on-demand ionic and electronic conductivities remains challenging, primarily due to the lack of correlating macroscopic conductivity with atom-scale structure. Here, the correlation of proton-electron conductivity and atom-scale structure in graphdiyne is explored. Precisely adjusting the conjugated diynes and oxygenic functional groups in graphdiyne yields a tunable proton-electron conductivity on the order of 103. In addition, a wet-chemistry lithography technique for uniform preparation of graphdiyne on flexible substrates is provided. Utilizing the proton-electron conductivity and mechanical tolerance of graphdiyne, bimodal flexible devices serving as capacitive switches and resistive sensors are created. As a proof-of-concept, a breath-machine interface for sentence-based communication and self-nursing tasks with an accuracy of 98% is designed. This work represents an important step toward understanding the atom-scale structure-conductivity relationship and extending the applications of mixed conducting materials to assistive technology.

11.
Water Res ; 257: 121715, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38728779

RESUMO

High-valent metal-oxo species (HMOS) have been extensively recognized in advanced oxidation processes (AOPs) owing to their high selectivity and high chemical utilization efficiency. However, the interactions between HMOS and halide ions in sewage wastewater are complicated, leading to ongoing debates on the intrinsic reactive species and impacts on remediation. Herein, we prepared three typical HMOS, including Fe(IV), Mn(V)-nitrilotriacetic acid complex (Mn(V)NTA) and Co(IV) through peroxymonosulfate (PMS) activation and comparatively studied their interactions with Cl- to reveal different reactive chlorine species (RCS) and the effects of HMOS types on RCS generation pathways. Our results show that the presence of Cl- alters the cleavage behavior of the peroxide OO bond in PMS and prohibits the generation of Fe(IV), spontaneously promoting SO4•- production and its subsequent transformation to secondary radicals like Cl• and Cl2•-. The generation and oxidation capacity of Mn(V)NTA was scarcely influenced by Cl-, while Cl- would substantially consume Co(IV) and promote HOCl generation through an oxygen-transfer reaction, evidenced by density functional theory (DFT) and deuterium oxide solvent exchange experiment. The two-electron-transfer standard redox potentials of Fe(IV), Mn(V)NTA and Co(IV) were calculated as 2.43, 2.55 and 2.85 V, respectively. Due to the different reactive species and pathways in the presence of Cl-, the amounts of chlorinated by-products followed the order of Co(II)/PMS > Fe(II)/PMS > Mn(II)NTA/PMS. Thus, this work renovates the knowledge of halide chemistry in HMOS-based systems and sheds light on the impact on the treatment of salinity-containing wastewater.


Assuntos
Oxirredução , Cloretos/química , Cloro/química , Metais/química , Halogenação , Poluentes Químicos da Água/química , Águas Residuárias/química
12.
Sci Total Environ ; 884: 163910, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37142034

RESUMO

The land surface has been drying over recent decades, which is inconsistent with the greening of the Earth. The extent and spatial variation in the sensitivity of vegetation to aridity changes in drylands and humid regions remain unclear. In this study, satellite observation and reanalysis data were used to analyze the relationship between vegetation growth and atmospheric aridity changes in different climatological regions on a global scale. Our results showed that the leaf area index (LAI) increased at a rate of 0.032/decade from 1982 to 2014, while the aridity index (AI) increased slightly at a rate of 0.005/decade. Over the past three decades, the sensitivity of the LAI to AI has decreased in drylands and increased in humid regions. Thus, the LAI and AI were decoupled in drylands, whereas the effect of aridity on vegetation was enhanced in humid regions during the study period. The physical and physiological effects of increasing CO2 concentration are responsible for the divergent responses of vegetation sensitivity to aridity in drylands and humid regions. The results of the structural equation models showed that the effect of increasing CO2 concentration via LAI and temperature, with respect to decreasing AI, enhanced the negative relationship between LAI and AI in humid regions. The greenhouse effect of increasing CO2 concentration resulted in an increase in temperature and a reduction in aridity, whereas the fertilization effect of CO2 increased LAI, thus creating an inconsistent trend with LAI and AI in drylands.


Assuntos
Dióxido de Carbono , Mudança Climática , Dióxido de Carbono/análise , Temperatura , Folhas de Planta/química , Modelos Teóricos , Ecossistema
13.
Int J Parasitol ; 53(10): 545-554, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37150475

RESUMO

The horse genotype is one of three common Cryptosporidium spp. in equine animals and has been identified in some human cases. The species status of Cryptosporidium horse genotype remains unclear due to the lack of extensive morphological, biological, and genetic data. In the present study, we have conducted biological and whole genome sequence analyses of an isolate of the genotype from hedgehogs and proposed to name it Cryptosporidium equi n. sp. to reflect its common occurrence in equine animals. Oocysts of C. equi measured 5.12 ± 0.36 µm × 4.46 ± 0.21 µm with a shape index of 1.15 ± 0.08 (n = 50). Cryptosporidium equi was infectious to 3-week-old four-toed hedgehogs (Atelerix albiventris) and mice, with a prepatent period of 2-9 days and a patent period of 30-40 days in hedgehogs. It was not infectious to rats and rabbits. Phylogenetic analyses of small subunit rRNA, 70 kDa heat shock protein, actin, 60 kDa glycoprotein and 100 other orthologous genes revealed that C. equi is genetically distinct from other known Cryptosporidium species and genotypes. The sequence identity between C. equi and Cryptosporidium parvum genomes is 97.9%. Compared with C. parvum, C. equi has lost two MEDLE genes and one insulinase-like protease gene and gained one SKSR gene. In addition, 60 genes have highly divergent sequences (sequence differences ≥ 5.0%), including those encoding mucin-like glycoproteins, insulinase-like peptidases, and MEDLE and SKSR proteins. The genetic uniqueness of C. equi supports its increasing host range and the naming of it as a valid Cryptosporidium species. This is the first known use of whole genome sequence data in delineating new Cryptosporidium species.


Assuntos
Cryptosporidiidae , Criptosporidiose , Cryptosporidium , Insulisina , Animais , Cavalos , Camundongos , Ratos , Humanos , Coelhos , Cryptosporidium/genética , Filogenia , Ouriços , Insulisina/genética , Genótipo , Fezes
14.
Water Res ; 246: 120695, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37812978

RESUMO

Peracetic acid (PAA) is regarded as an environmentally friendly oxidant because of its low formation of toxic byproducts. However, this study revealed the potential risk of generating disinfection byproducts (DBPs) when treating iodine-containing wastewater with PAA. The transformation efficiency of bisphenol A (BPA), a commonly detected phenolic contaminant and a surrogate for phenolic moieties in dissolved organic matter, by PAA increased rapidly in the presence of I-, which was primarily attributed to the formation of active iodine (HOI/I2) in the system. Kinetic model simulations demonstrated that the second-order rate constant between PAA and HOI was 54.0 M-1 s-1 at pH 7.0, which was lower than the generation rate of HOI via the reaction between PAA and I-. Therefore, HOI can combine with BPA to produce iodine disinfection byproducts (I-DBPs). The transformation of BPA and the generation of I-DBPs in the I-/PAA system were highly pH-dependent. Specifically, acidic conditions were more favorable for BPA degradation because of the higher reaction rates of BPA and HOI. More iodinated aromatic products were detected after 5 min of the reaction under acidic and neutral conditions, resulting in higher toxicity towards E. coli. After 12 h of the reaction, more adsorbable organic iodine (AOI) was generated at alkaline conditions because HOI was not able to efficiency transform to IO3-. The presence of H2O2 in the PAA solution played a role in the reaction with HOI, particularly under alkaline conditions. This study significantly advances the understanding of the role of I- in BPA oxidation by PAA and provides a warning to further evaluate the potential environmental risk during the treatment of iodine-bearing wastewater with PAA.


Assuntos
Iodo , Poluentes Químicos da Água , Purificação da Água , Ácido Peracético , Desinfecção/métodos , Iodetos , Peróxido de Hidrogênio , Águas Residuárias , Escherichia coli , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/análise , Purificação da Água/métodos
15.
Water Res ; 232: 119666, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36731206

RESUMO

As an oxidant, peracetic acid (PAA) is gradually applied in advanced oxidation processes (AOPs) for pollutants degradation due to its high oxidation and low toxicity. In this study, the prepared Co2Fe1-LDH showed excellent PAA activation ability for efficient degradation of various pharmaceuticals with a removal efficiency ranging from 82.3% to 100%. Taking sulfamethoxazole (SMX) as a model pharmaceutical, it's found that organic radical (R-O•) with high concentration of 5.27 × 10-13 M is the dominant ROS responsible for contaminants degradation. Further analysis demonstrated that bimetallic synergistic effect between Co and Fe can improve electron transfer ability of Co2Fe1-LDH, resulting in the accelerated conversion of Co from +3 to +2 valence state with a high reaction rate (4.3 × 101-1.483 × 102 M-1 s-1) in this system. Density functional theory (DFT) reveals that C1, C3, C5 and N11 with higher ƒ0 and ƒ-values concentrated on aniline group of SMX are the main attack sites, which is consistent with the results of degradation products. Besides, Co2Fe1-LDH/PAA system can effectively reduce biological toxicity after reaction, due to lower biotoxicity of degradation products and the carbon sources provided by PAA. In application, Co2Fe1-LDH/PAA system was capable of resisting the influence of water matrix and effectively removing pollutants in actual hospital wastewater. Importantly, this study comprehensively evaluated the ability of Co2Fe1-LDH/PAA system to remove organics and improve the biodegradability of actual hospital wastewater, providing guidance for application of PAA activation system.


Assuntos
Ácido Peracético , Poluentes Químicos da Água , Águas Residuárias , Peróxido de Hidrogênio , Sulfametoxazol , Oxirredução , Preparações Farmacêuticas
16.
Front Optoelectron ; 15(1): 24, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-36637532

RESUMO

Metasurfaces, also known as 2D artificial metamaterials, are attracting great attention due to their unprecedented performances and functionalities that are hard to achieve by conventional diffractive or refractive elements. With their sub-wavelength optical scatterers, metasurfaces have been utilized to freely modify different characteristics of incident light such as amplitude, polarization, phase, and frequency. Compared to traditional bulky lenses, metasurface lenses possess the advantages of flatness, light weight, and compatibility with semiconductor manufacture technology. They have been widely applied to a range of scenarios including imaging, solar energy harvesting, optoelectronic detection, etc. In this review, we will first introduce the fundamental design principles for metalens, and then report recent theoretical and experimental progress with emphasis on methods to correct chromatic and monochromatic aberrations. Finally, typical applications of metalenses and corresponding design rules will be presented, followed by a brief outlook on the prospects and challenges of this field.

17.
Adv Mater ; 34(20): e2201895, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35305270

RESUMO

The biological visual system encodes optical information into spikes and processes them by the neural network, which enables the perception with high throughput of visual processing with ultralow energy budget. This has inspired a wide spectrum of devices to imitate such neural process, while precise mimicking such procedure is still highly required. Here, a highly bio-realistic photoelectric spiking neuron for visual depth perception is presented. The firing spikes generated by the TaOX memristive spiking encoders have a biologically similar frequency range of 1-200 Hz and sub-micro watts power. Such spiking encoder is integrated with a photodetector and a network of neuromorphic transistors, for information collection and recognition tasks, respectively. The distance-dependent response and eye fatigue of biological visual systems have been mimicked based on such photoelectric spiking neuron. The simulated depth perception shows a recognition improvement by adapting to sights at different distances. The results can advance the technologies in bioinspired or robotic systems that may be endowed with depth perception and power efficiency at the same time.


Assuntos
Redes Neurais de Computação , Neurônios , Percepção de Profundidade , Neurônios/fisiologia , Percepção Visual
18.
Front Neurosci ; 15: 690950, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34267624

RESUMO

Neuromorphic devices that can emulate the bionic sensory and perceptual functions of neural systems have great applications in personal healthcare monitoring, neuro-prosthetics, and human-machine interfaces. In order to realize bionic sensing and perception, it's crucial to prepare neuromorphic devices with the function of perceiving environment in real-time. Up to now, lots of efforts have been made in the incorporation of the bio-inspired sensing and neuromorphic engineering in the booming artificial intelligence industry. In this review, we first introduce neuromorphic devices based on diverse materials and mechanisms. Then we summarize the progress made in the emulation of biological sensing and perception systems. Finally, the challenges and opportunities in these fields are also discussed.

19.
J Hazard Mater ; 416: 125809, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-33865112

RESUMO

Recently, an increasing number of works have been reported about iron-based materials applied as catalysts in peroxide activation processes to degrade pollutants in water. Iron-based catalysts include synthetic and natural iron-based materials. However, some synthetic iron-based materials are difficult to scale up in the practical applications due to high cost and serious secondary environmental pollution. In contrast, natural iron-based minerals are more available and cheaper, and also hold a great promise in peroxide activation processes for pollutant degradation. In this review, we classify different natural iron-based materials into two categories: iron oxide minerals (e.g., magnetite, hematite, and goethite,), and iron sulfide minerals (e.g., pyrite and pyrrhotite,). Their overview applications in peroxide activation processes for pollutant degradation in wastewaters are systematically summarized for the first time. Moreover, the peroxide activation mechanisms induced by natural minerals, and the influences of reaction conditions in different systems are discussed. Finally, the application prospects and existing drawbacks of natural iron-based minerals in the peroxide activation processes for wastewater treatment are proposed. We believe this review can shed light on the application of natural iron-based minerals in peroxide activation processes and present better perspectives for future researches.


Assuntos
Peróxido de Hidrogênio , Peróxidos , Ferro , Minerais , Oxirredução
20.
Drug Des Devel Ther ; 14: 5505-5514, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33363359

RESUMO

BACKGROUND: Atherosclerosis is a chronic inflammatory disease responsible for thrombosis, blood supply disorders, myocardial infarction and strokes, eventually leading to increased deaths and reduced quality of life. As inflammation plays a vital role in the development of this disease, the present study aims to investigate whether urinary trypsin inhibitor (UTI) with anti-inflammatory property can inhibit the proliferation, invasion and phenotypic switching of PDGF-BB-induced vascular smooth muscle cells (VSMCs) and probe its potential mechanism. METHODS: Western blot was used to detect the expressions of the proteins related to the Akt/eNOS/NO/cGMP signaling pathway, phenotypic switching and proliferation. CCK-8 assay and EdU staining were used to detect cell proliferation of VSMCs. Transwell and wound healing assays were respectively conducted to measure the invasion and migration of VSMCs. The concentration of NO was evaluated by NO detection kit. ELISA assay analyzed the expression of cyclic GMP (cGMP). RESULTS: The expressions of p-Akt and p-eNOS were elevated by UTI treatment. Furthermore, UTI inhibited the proliferation, migration and invasion of VSMCs. UTI also increased the expressions of proteins related to phenotypic switching. The amount of NO and expression of cGMP were both elevated under UTI treatment. CONCLUSION: UTI inhibits the proliferation, invasion and phenotypic switching of PDGF-BB-induced VSMCs via Akt/eNOS/NO/cGMP signaling pathway, which might provide a theoretical basis for the UTI treatment of atherosclerosis.


Assuntos
Glicoproteínas/farmacologia , Músculo Liso Vascular/metabolismo , Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , GMP Cíclico/metabolismo , Humanos , Óxido Nítrico/metabolismo , Fenótipo , Fator de Crescimento Derivado de Plaquetas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA