Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Eur Respir J ; 61(5)2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37080569

RESUMO

BACKGROUND: Mucin disulfide cross-links mediate pathologic mucus formation in muco-obstructive lung diseases. MUC-031, a novel thiol-modified carbohydrate compound, cleaves disulfides to cause mucolysis. The aim of this study was to determine the mucolytic and therapeutic effects of MUC-031 in sputum from patients with cystic fibrosis (CF) and mice with muco-obstructive lung disease (ßENaC-Tg mice). METHODS: We compared the mucolytic efficacy of MUC-031 and existing mucolytics (N-acetylcysteine (NAC) and recombinant human deoxyribonuclease I (rhDNase)) using rheology to measure the elastic modulus (G') of CF sputum, and we tested effects of MUC-031 on airway mucus plugging, inflammation and survival in ßENaC-Tg mice to determine its mucolytic efficacy in vivo. RESULTS: In CF sputum, compared to the effects of rhDNase and NAC, MUC-031 caused a larger decrease in sputum G', was faster in decreasing sputum G' by 50% and caused mucolysis of a larger proportion of sputum samples within 15 min of drug addition. Compared to vehicle control, three treatments with MUC-031 in 1 day in adult ßENaC-Tg mice decreased airway mucus content (16.8±3.2 versus 7.5±1.2 nL·mm-2, p<0.01) and bronchoalveolar lavage cells (73 833±6930 versus 47 679±7736 cells·mL-1, p<0.05). Twice-daily treatment with MUC-031 for 2 weeks also caused decreases in these outcomes in adult and neonatal ßENaC-Tg mice and reduced mortality from 37% in vehicle-treated ßENaC-Tg neonates to 21% in those treated with MUC-031 (p<0.05). CONCLUSION: MUC-031 is a potent and fast-acting mucolytic that decreases airway mucus plugging, lessens airway inflammation and improves survival in ßENaC-Tg mice. These data provide rationale for human trials of MUC-031 in muco-obstructive lung diseases.


Assuntos
Fibrose Cística , Pneumopatias Obstrutivas , Adulto , Humanos , Camundongos , Animais , Expectorantes/uso terapêutico , Compostos de Sulfidrila/farmacologia , Compostos de Sulfidrila/uso terapêutico , Acetilcisteína/farmacologia , Acetilcisteína/uso terapêutico , Escarro , Pneumopatias Obstrutivas/tratamento farmacológico , Inflamação/patologia , Carboidratos/farmacologia , Carboidratos/uso terapêutico , Pulmão
2.
Mol Pharm ; 20(9): 4770-4785, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37595572

RESUMO

The aim of the present study was to investigate how different polymers affect the dissociation of cocrystals prepared by co-spray-drying active pharmaceutical ingredient (API), coformer, and polymer. Diclofenac acid-l-proline cocrystal (DPCC) was selected in this study as a model cocrystal due to its previously reported poor physical stability in a high-humidity environment. Polymers investigated include polyvinylpyrrolidone (PVP), poly(1-vinylpyrrolidone-co-vinyl acetate) (PVPVA), hydroxypropyl methyl cellulose, hydroxypropylmethylcellulose acetate succinate, ethyl cellulose, and Eudragit L-100. Terahertz Raman spectroscopy (THz Raman) and powder X-ray diffraction (PXRD) were used to monitor the cocrystal dissociation rate in a high-humidity environment. A Raman probe was used in situ to monitor the extent of the dissociation of DPCC and DPCC in crystalline solid dispersions (CSDs) with polymer when exposed to pH 6.8 phosphate buffer and water. The solubility of DPCC and solid dispersions of DPCC in pH 6.8 phosphate buffer and water was also measured. The dissociation of DPCC was water-mediated, and more than 60% of DPCC dissociated in 18 h at 40 °C and 95% RH. Interestingly, the physical stability of the cocrystal was effectively improved by producing CSDs with polymers. The inclusion of just 1 wt % polymer in a CSD with DPCC protected the cocrystal from dissociation over 18 h under the same conditions. Furthermore, the CSD with PVPVA was still partially stable, and the CSD with PVP was stable (undissociated) after 7 days. The superior stability of DPCC in CSDs with PVP and PVPVA was also demonstrated when systems were exposed to water or pH 6.8 phosphate buffer and resulted in higher dynamic solubility of the CSDs compared to DPCC alone. The improvement in physical stability of the cocrystal in CSDs was thought to be due to an efficient mixing between polymer and cocrystal at the molecular level provided by spray drying and in situ gelling of polymer. It is hypothesized that polymer chains could undergo gelling in situ and form a physical barrier, preventing cocrystal interaction with water, which contributes to slowing down the water-mediated dissociation.


Assuntos
Polímeros , Secagem por Atomização , Povidona , Difração de Raios X , Fosfatos
3.
Am J Physiol Lung Cell Mol Physiol ; 323(3): L372-L389, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35762590

RESUMO

The redox status of the cysteine-rich SARS-CoV-2 spike glycoprotein (SARS-2-S) is important for the binding of SARS-2-S to angiotensin-converting enzyme 2 (ACE2), suggesting that drugs with a functional thiol group ("thiol drugs") may cleave cystines to disrupt SARS-CoV-2 cell entry. In addition, neutrophil-induced oxidative stress is a mechanism of COVID-19 lung injury, and the antioxidant and anti-inflammatory properties of thiol drugs, especially cysteamine, may limit this injury. To first explore the antiviral effects of thiol drugs in COVID-19, we used an ACE-2 binding assay and cell entry assays utilizing reporter pseudoviruses and authentic SARS-CoV-2 viruses. We found that multiple thiol drugs inhibit SARS-2-S binding to ACE2 and virus infection. The most potent drugs were effective in the low millimolar range, and IC50 values followed the order of their cystine cleavage rates and lower thiol pKa values. To determine if thiol drugs have antiviral effects in vivo and to explore any anti-inflammatory effects of thiol drugs in COVID-19, we tested the effects of cysteamine delivered intraperitoneally to hamsters infected with SARS-CoV-2. Cysteamine did not decrease lung viral infection, but it significantly decreased lung neutrophilic inflammation and alveolar hemorrhage. We speculate that the concentration of cysteamine achieved in the lungs with intraperitoneal delivery was insufficient for antiviral effects but sufficient for anti-inflammatory effects. We conclude that thiol drugs decrease SARS-CoV-2 lung inflammation and injury, and we provide rationale for future studies to test if direct (aerosol) delivery of thiol drugs to the airways might also result in antiviral effects.


Assuntos
Enzima de Conversão de Angiotensina 2 , Tratamento Farmacológico da COVID-19 , Anti-Inflamatórios/farmacologia , Antivirais/farmacologia , Antivirais/uso terapêutico , Cisteamina/farmacologia , Humanos , Peptidil Dipeptidase A/metabolismo , Preparações Farmacêuticas , SARS-CoV-2 , Compostos de Sulfidrila/farmacologia
4.
AAPS PharmSciTech ; 23(7): 249, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36056225

RESUMO

Amorphous solid dispersions enhance solubility and oral bioavailability of poorly water-soluble drugs. The escalating number of drugs with poor aqueous solubility, poor dissolution, and poor oral bioavailability is an unresolved problem that requires adequate interventions. This review article highlights recent solubility and bioavailability enhancement advances using amorphous solid dispersions (ASDs). The review also highlights the mechanism of enhanced dissolution and the challenges faced by ASD-based products, such as stability and scale-up. The role of process analytical technology (PAT) supporting continuous manufacturing is highlighted. Accurately predicting interactions between the drug and polymeric carrier requires long experimental screening methods, and this is a space where computational tools hold significant potential. Recent advancements in data science, computational tools, and easy access to high-end computation power are set to accelerate ASD-based research. Hence, particular emphasis has been given to molecular modeling techniques that can address some of the unsolved questions related to ASDs. With the advancement in PAT tools and artificial intelligence, there is an increasing interest in the continuous manufacturing of pharmaceuticals. ASDs are a suitable option for continuous manufacturing, as production of a drug product from an ASD by direct compression is a reality, where the addition of multiple excipients is easy to avoid. Significant attention is necessary for ongoing clinical studies based on ASDs, which is paving the way for the approval of many new ASDs and their introduction into the market.


Assuntos
Inteligência Artificial , Química Farmacêutica , Disponibilidade Biológica , Química Farmacêutica/métodos , Composição de Medicamentos/métodos , Excipientes , Solubilidade , Água
5.
Cellulose (Lond) ; 28(14): 8971-8985, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34720465

RESUMO

Microcrystalline cellulose (MCC) is a semi-crystalline material with inherent variable crystallinity due to raw material source and variable manufacturing conditions. MCC crystallinity variability can result in downstream process variability. The aim of this study was to develop models to determine MCC crystallinity index (%CI) from Raman spectra of 30 commercial batches using Raman probes with spot sizes of 100 µm (MR probe) and 6 mm (PhAT probe). A principal component analysis model separated Raman spectra of the same samples captured using the different probes. The %CI was determined using a previously reported univariate model based on the ratio of the peaks at 380 and 1096 cm-1. The univariate model was adjusted for each probe. The %CI was also predicted from spectral data from each probe using partial least squares regression models (where Raman spectra and univariate %CI were the dependent and independent variables, respectively). Both models showed adequate predictive power. For these models a general reference amorphous spectrum was proposed for each instrument. The development of the PLS model substantially reduced the analysis time as it eliminates the need for spectral deconvolution. A web application containing all the models was developed. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10570-021-04093-1.

6.
Mol Pharm ; 17(9): 3412-3424, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32852215

RESUMO

Active pharmaceutical ingredient (API)-based ionic liquids (API-ILs) present an exciting new paradigm for the formulation of poorly water-soluble drugs. In this study, a model room temperature API-IL (1-butyl-3-methyl imidazolium ibuprofenate) was demonstrated to be not just highly soluble but fully miscible and hence have effectively unlimited solubility in water, compared to 0.021 mg mL-1 solubility for the ibuprofen API. Solutions of the API-IL were found to be stable for up to 2 years, indicating that they have the potential to offer thermodynamic stability upon release, avoiding in vivo recrystallization issues that can limit the bioavailability of amorphous solid dispersions (ASDs) and some high-energy crystalline forms. The ibuprofen API-IL was successfully spray-dried into a polymer carrier in loadings of up to 75% w/w in order to transform it into a solid powder suitable for oral solid dosage (OSD) formulation. From modulated differential scanning calorimetry, hot-stage microscopy, powder X-ray diffraction, and attenuated total reflectance Fourier transform infrared spectroscopy measurements, the mechanism by which this high loading was achieved is based on the immiscibility between the polymer and API-IL, with the polymer encapsulating the phase-separated API-IL. Dissolution studies showed that solidification of the API-IL into microcapsules by spray drying in this manner had no detrimental effect on release characteristics. Failure to dissolve crystalline API forms into the polymer matrix eliminates the solubility enhancement of ASDs but not for highly soluble or fully miscible API-ILs. Furthermore, miscible API-IL/polymer dispersions at high loadings were found to possess less-favorable physical properties because of melting point depression, resulting, in some cases, in a failure to form a viable powder. As such, microencapsulated API-ILs at high loadings in immiscible or low-miscibility polymers that have solubility enhancement of the API-IL form, while providing solid powders for processing, represent a promising new platform for the formulation of poorly soluble compounds as OSDs.


Assuntos
Líquidos Iônicos/química , Preparações Farmacêuticas/química , Polímeros/química , Química Farmacêutica/métodos , Cristalização/métodos , Portadores de Fármacos/química , Liberação Controlada de Fármacos/efeitos dos fármacos , Pós/química , Solubilidade/efeitos dos fármacos , Temperatura , Água/química
7.
AAPS PharmSciTech ; 20(1): 28, 2019 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-30603811

RESUMO

Different pharmaceutical manufacturing processes have been demonstrated to represent feasible platforms for the production of pharmaceutical cocrystals. However, new methods are needed for the manufacture of cocrystals on a large scale. In this work, the suitability of the use of a fluidized bed system for granulation and concomitant cocrystallization was investigated. Dapsone (DAP) and caffeine (CAF) have been shown to form a stable cocrystal by simple solvent evaporation. DAP is the active pharmaceutical ingredient (API) and CAF is the coformer. In the present study, DAP-CAF cocrystals were produced through liquid-assisted milling and the product obtained was used as a cocrystal reference. The granulation of DAP and CAF was carried out using four different experimental conditions. The solid-state properties of the constituents of the granules were characterised by differential scanning calorimetry (DSC) and x-ray powder diffraction (PXRD) analysis while the granule size distribution and morphology were investigated using laser diffraction and scanning electron microscopy (SEM), respectively. DAP-CAF cocrystal granules were successfully produced during fluidized bed granulation. The formation of cocrystals was possible only when the DAP and CAF were dissolved in the liquid phase and sprayed over the fluidized solid particles. Furthermore, the presence of polymers in solution interferes with the cocrystallization, resulting in the amorphization of the DAP and CAF. Cocrystallization via fluidized bed granulation represents a useful tool and a feasible alternative technique for the large scale manufacture of pharmaceutical cocrystals for solid dosage forms.


Assuntos
Cafeína/síntese química , Química Farmacêutica/métodos , Dapsona/síntese química , Varredura Diferencial de Calorimetria/métodos , Cristalização/métodos , Combinação de Medicamentos , Solventes/química , Difração de Raios X/métodos
8.
AAPS PharmSciTech ; 21(1): 23, 2019 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-31832799

RESUMO

The development of oral solid dosage forms, such as tablets that contain a high dose of drug(s), requires polymers and other additives to be incorporated at low levels as possible, to keep the final tablet weight low, and, correspondingly, the dosage form size small enough to be acceptable from a patient perspective. Additionally, a multi-step batch-based manufacturing process is usually required for production of solid dosage forms. This study presents the development and production, by twin-screw melt granulation technology, of a high-dose immediate-release fixed-dose combination (FDC) product of metformin hydrochloride (MET) and sitagliptin phosphate (SIT), with drug loads of 80% w/w and 6% w/w, respectively. For an 850/63 mg dose of MET/SIT, the final weight of the caplets was approximately 1063 mg compared with 1143 mg for the equivalent dose in Janumet®, the marketed product. Mixtures of the two drugs and polymers were melt-granulated at temperatures below the individual melting temperatures of MET and SIT (231.65 and 213.89°C, respectively) but above the glass transition temperature or melting temperature of the binder(s) used. By careful selection of binders, and processing conditions, direct compressed immediate-release caplets with desired product profiles were successfully produced. The melt granule formulations before compression showed good flow properties, were larger in particle size than individual starting API materials and were easily compressible. Melt granulation is a suitable platform for developing direct compressible high-dose immediate-release solid dosage forms of FDC products.


Assuntos
Metformina/administração & dosagem , Fosfato de Sitagliptina/administração & dosagem , Química Farmacêutica , Combinação de Medicamentos , Humanos , Temperatura de Transição
9.
AAPS PharmSciTech ; 19(6): 2687-2699, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29968042

RESUMO

In this study, the formation of caffeine/dapsone (CAF/DAP) cocrystals by scalable production methods, such as liquid-assisted grinding (LAG) and spray drying, was investigated in the context of the potential use of processed cocrystal powder for pulmonary delivery. A CAF/DAP cocrystal (1:1 M ratio) was successfully prepared by slow evaporation from both acetone and ethyl acetate. Acetone, ethyl acetate, and ethanol were all successfully used to prepare cocrystals by LAG and spray drying. The powders obtained were characterized by X-ray diffractometry (XRD), differential scanning calorimetry (DSC), thermogravimetry (TGA), and Fourier transform infrared spectroscopy (FTIR). Laser diffraction analysis indicated a median particle size (D50) for spray-dried powders prepared from acetone, ethanol, and ethyl acetate of 5.4 ± 0.7, 5.2 ± 0.1, and 5.1 ± 0.0 µm respectively, which are appropriate sizes for pulmonary delivery by means of a dry powder inhaler. The solubility of the CAF/DAP cocrystal in phosphate buffer pH 7.4, prepared by spray drying using acetone, was 506.5 ± 31.5 µg/mL, while pure crystalline DAP had a measured solubility of 217.1 ± 7.8 µg/mL. In vitro cytotoxicity studies using Calu-3 cells indicated that the cocrystals were not toxic at concentrations of 0.1 and of 1 mM of DAP, while an in vitro permeability study suggested caffeine may contribute to the permeation of DAP by hindering the efflux effect. The results obtained indicate that the CAF/DAP cocrystal, particularly when prepared by the spray drying method, represents a possible suitable approach for inhalation formulations with applications in pulmonary pathologies.


Assuntos
Cafeína/análise , Cafeína/síntese química , Química Farmacêutica/métodos , Cristalização/métodos , Dapsona/síntese química , Administração por Inalação , Varredura Diferencial de Calorimetria/métodos , Linhagem Celular , Dapsona/análise , Dessecação/métodos , Composição de Medicamentos/métodos , Inaladores de Pó Seco , Humanos , Microscopia Eletrônica de Varredura/métodos , Tamanho da Partícula , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Termogravimetria/métodos , Difração de Raios X/métodos
10.
Mol Pharm ; 14(11): 3718-3728, 2017 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-28922604

RESUMO

Fluid bed coating offers potential advantages as a formulation platform for amorphous solid dispersions (ASDs) of poorly soluble drugs, being a one-step manufacturing process which could reduce the risk of phase separation associated with multiple step manufacturing approaches. However, the impact of the physicochemical nature of nonpareil carriers on the properties and drug release from the ASDs has not been studied in detail. In this work, tartaric acid (TAP) and microcrystalline cellulose (CEL) spheres were chosen as examples of functional and inert beads, respectively. Two structurally related triazole antifungals, itraconazole (ITR) and posaconazole (POS), were chosen as model drugs. Solid-state investigations revealed that the fluidized bed process result in both types of spheres uniformly coated with ITR and POS ASDs based on Eudragit L100-55 (EUD). A single glass transition temperature (Tg) was determined for each of the ASDs. Infrared studies suggested the presence of a weak interaction between POS and TAP, which translated into premature release of POS from the POS/EUD ASD coated TAP spheres in FaSSGF and subsequently lower POS cumulative release in comparison to the ASD coated on CEL beads. High resolution investigations of morphological and compositional changes during dissolution, using scanning electron microscopy and atomic force microscopy coupled with nanoscale thermal investigation, revealed that crystallization of the drug from the ASDs was induced during dissolution when TAP spheres were used as carriers. In contrast, ASDs coated on CEL underwent phase separation and drug-rich nanospecies were formed in the matrix due to the solubility gap between the drug and EUD in FaSSIF. This study demonstrates that properties of carrier for the ASD fundamentally affect the drug release properties and the proper selection of carrier beads is critical to ensure product quality.


Assuntos
Antifúngicos/química , Itraconazol/química , Triazóis/química , Celulose/química , Tartaratos/química
11.
Mol Pharm ; 14(4): 1095-1106, 2017 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-28198632

RESUMO

Chagas disease (CD) is a parasitic zoonosis endemic in most mainland countries of Central and South America affecting nearly 10 million people, with 100 million people at high risk of contracting the disease. Treatment is only effective if received at the early stages of the disease. Only two drugs (benznidazole and nifurtimox) have so far been marketed, and both share various limitations such as variable efficacy, many side effects, and long duration of treatment, thus reducing compliance. The in vitro and in vivo efficacy of poly-aggregated amphotericin B (AmB), encapsulated poly-aggregated AmB in albumin microspheres (AmB-AME), and dimeric AmB-sodium deoxycholate micelles (AmB-NaDC) was evaluated. Dimeric AmB-NaDC exhibited a promising selectivity index (SI = 3164) against amastigotes, which was much higher than those obtained for licensed drugs (benznidazole and nifurtimox). AmB-AME, but not AmB-NaDC, significantly reduced the parasitemia levels (3.6-fold) in comparison to the control group after parenteral administration at day 7 postinfection. However, the oral administration of AmB-NaDC (10-15 mg/kg/day for 10 days) resulted in a 75% reduction of parasitemia levels and prolonged the survival rate in 100% of the tested animals. Thus, the results presented here illustrate for the first time the oral efficacy of AmB in the treatment of trypanosomiasis. AmB-NaDC is an easily scalable, affordable formulation prepared from GRAS excipients, enabling treatment access worldwide, and therefore it can be regarded as a promising therapy for trypanosomiasis.


Assuntos
Anfotericina B/química , Anfotericina B/farmacologia , Antifúngicos/química , Antifúngicos/farmacologia , Doença de Chagas/tratamento farmacológico , Ácido Desoxicólico/química , Ácido Desoxicólico/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Albuminas/química , Animais , Doença de Chagas/microbiologia , Química Farmacêutica/métodos , Combinação de Medicamentos , Excipientes/química , Feminino , Camundongos Endogâmicos BALB C , Micelas , Microesferas , Tamanho da Partícula
12.
Acta Haematol ; 138(4): 223-232, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29301124

RESUMO

BACKGROUND: Iron food fortification and oral iron formulations are frequently limited by poor absorption, resulting in the widespread use of high-dose oral iron, which is poorly tolerated. METHODS: We evaluated novel iron-denatured whey protein (Iron-WP) microspheres on reactive oxygen species (ROS) and viability in gut epithelial (HT29) cells. We compared iron absorption from Iron-WP versus equimolar-dose (25 mg elemental iron) ferrous sulphate (FeSO4) in a prospective, randomised, cross-over study in fasting volunteers (n = 21 per group) dependent on relative iron depletion (a ferritin level ≤/>30 ng/mL). RESULTS: Iron-WP caused less ROS generation and better HT29 cell viability than equimolar FeSO4. Iron-WP also showed better absorption with a maximal 149 ± 39% increase in serum iron compared to 65 ± 14% for FeSO4 (p = 0.01). The response to both treatments was dependent on relative iron depletion, and multi-variable analysis showed that better absorption with Iron-WP was independent of baseline serum iron, ferritin, transferrin saturation, and haemoglobin in the overall group and in the sub-cohort with relative iron depletion at baseline (p < 0.01). CONCLUSIONS: Novel Iron-WP microspheres may protect gut epithelial cells and improve the absorption of iron versus FeSO4. Further evaluation of this approach to food fortification and supplementation with iron is warranted.


Assuntos
Ferro/administração & dosagem , Proteínas do Soro do Leite/administração & dosagem , Adulto , Estudos Cross-Over , Método Duplo-Cego , Portadores de Fármacos/administração & dosagem , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Jejum/sangue , Feminino , Ferritinas/sangue , Humanos , Absorção Intestinal/efeitos dos fármacos , Ferro/efeitos adversos , Deficiências de Ferro , Masculino , Microesferas , Estresse Oxidativo/efeitos dos fármacos , Estudos Prospectivos , Substâncias Protetoras/administração & dosagem
13.
AAPS PharmSciTech ; 18(7): 2561-2569, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28224389

RESUMO

The aim of this study was to develop and validate a discriminating in vitro release test to evaluate rivastigmine transdermal patches. The Exelon® Patch was chosen as a model transdermal product. The studies of in vitro release were designed to determine the impact of the official apparatus chosen (USP apparatus 5 and USP apparatus 6), the rotation speed, and the dissolution medium characteristics on the rivastigmine release profile from transdermal patches. Patches with different drug release profiles were tested in order to evaluate the discriminating power of the in vitro release test developed and validated. Variables such as the apparatus type, the dissolution medium, and the rotation speed have a significant influence on the drug release characteristics from a transdermal patch. The in vitro release methodologies using the USP apparatus 5 at 50 rpm and USP apparatus 6 at 25 rpm using the medium phosphate-buffered saline pH 7.4 were considered discriminative and adequate to characterize the rivastigmine (RV) release from a commercial transdermal patch, Exelon® Patch.


Assuntos
Liberação Controlada de Fármacos , Rivastigmina/administração & dosagem , Adesivo Transdérmico , Farmacopeias como Assunto , Rivastigmina/química , Solubilidade
14.
Mol Pharm ; 13(1): 100-12, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26641021

RESUMO

Ciprofloxacin (CIP) is an antibiotic that has been clinically trialed for the treatment of lung infections by aerosolization. However, CIP is rapidly systemically absorbed after lung administration, increasing the risk for subtherapeutic pulmonary concentrations and resistant bacteria selection. In the presence of calcium, CIP forms complexes that reduce its oral absorption. Such complexation may slow down CIP absorption from the lung thereby maintaining high concentration in this tissue. Thus, we developed inhalable calcium-based inorganic-organic composite microparticles to sustain CIP within the lung. The aerodynamics and micromeritic properties of the microparticles were characterized. FTIR and XRD analysis suggest that the inorganic component of the particles comprised amorphous calcium carbonate and amorphous calcium formate, and that CIP and calcium interact in a 1:1 stoichiometry in the particles. CIP was completely released from the microparticles within 7 h, with profiles showing a slight dependence on pH (5 and 7.4) compared to the dissolution of pure CIP. Transport studies of CIP across Calu-3 cell monolayers, in the presence of various calcium concentrations, showed a decrease of up to 84% in CIP apparent permeability. The apparent minimum inhibitory concentration of CIP against Pseudomonas aeruginosa and Staphylococcus aureus was not changed in the presence of the same calcium concentration. These results indicate that the designed particles should provide sustained levels of CIP with therapeutic effect in the lung. With these microparticles, it should be possible to control CIP pharmacokinetics within the lung, based on controlled CIP release from the particles and reduced apparent permeability across the epithelial barrier due to the cation-CIP interaction.


Assuntos
Antibacterianos/farmacologia , Ciprofloxacina/farmacologia , Linhagem Celular , Humanos , Pulmão/microbiologia , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Varredura , Pseudomonas aeruginosa/efeitos dos fármacos , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus/efeitos dos fármacos , Difração de Raios X
15.
Mol Pharm ; 12(9): 3408-19, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26214347

RESUMO

In this study, a comparison of different methods to predict drug-polymer solubility was carried out on binary systems consisting of five model drugs (paracetamol, chloramphenicol, celecoxib, indomethacin, and felodipine) and polyvinylpyrrolidone/vinyl acetate copolymers (PVP/VA) of different monomer weight ratios. The drug-polymer solubility at 25 °C was predicted using the Flory-Huggins model, from data obtained at elevated temperature using thermal analysis methods based on the recrystallization of a supersaturated amorphous solid dispersion and two variations of the melting point depression method. These predictions were compared with the solubility in the low molecular weight liquid analogues of the PVP/VA copolymer (N-vinylpyrrolidone and vinyl acetate). The predicted solubilities at 25 °C varied considerably depending on the method used. However, the three thermal analysis methods ranked the predicted solubilities in the same order, except for the felodipine-PVP system. Furthermore, the magnitude of the predicted solubilities from the recrystallization method and melting point depression method correlated well with the estimates based on the solubility in the liquid analogues, which suggests that this method can be used as an initial screening tool if a liquid analogue is available. The learnings of this important comparative study provided general guidance for the selection of the most suitable method(s) for the screening of drug-polymer solubility.


Assuntos
Acetaminofen/química , Celecoxib/química , Cloranfenicol/química , Estabilidade de Medicamentos , Felodipino/química , Indometacina/química , Polímeros/química , Varredura Diferencial de Calorimetria , Química Farmacêutica , Cristalização/métodos , Povidona/química , Pirrolidinonas/química , Solubilidade , Termodinâmica , Compostos de Vinila/química
16.
Pharm Res ; 32(1): 180-95, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25074469

RESUMO

PURPOSE: To formulate and investigate the physicochemical properties, physical stability and aerosolization characteristics of nanoporous/nanoparticulate microparticles (NPMPs) prepared by co-spray drying the sugars raffinose pentahydrate (R) or trehalose dihydrate (T) with the cyclic oligosaccharide hydroxypropyl-ß-cyclodextrin (HPßCD). METHODS: Production of powders was carried out using a laboratory scale spray dryer. The resulting powders were characterised by X-ray powder diffraction (XRPD), scanning electron microscopy (SEM), laser diffraction particle sizing, specific surface area analysis (SSA), Fourier transform infrared (FTIR), differential scanning calorimetry (DSC), dynamic vapour sorption (DVS) and aerodynamic assessment using a Next Generation Impactor (NGI). RESULTS: Powders were amorphous and composed of spherical, porous microparticles with reduced particle size and high specific surface area (~100 m(2)/g). DSC scans showed a single glass transition temperature. FTIR was indicative of the existence of molecular interactions between the carbohydrates. DVS analysis showed an increase in the critical relative humidity (RH) of raffinose and trehalose and eventual crystallization inhibition with increasing concentration of HPßCD. The in vitro deposition showed powders formulated with HPßCD had higher recovered emitted dose and fine particle fraction (<5 µm) than raffinose and trehalose spray dried alone. CONCLUSIONS: The co-spray drying of raffinose or trehalose with HPßCD results in powders with improved physicochemical characteristics, physical stability and aerodynamic behaviour compared to spray-dried raffinose/trehalose particles, constituting improved potential drug-carrier systems for pulmonary delivery.


Assuntos
Portadores de Fármacos/química , Nanopartículas/química , Rafinose/química , Tecnologia Farmacêutica/métodos , Trealose/química , beta-Ciclodextrinas/química , 2-Hidroxipropil-beta-Ciclodextrina , Aerossóis , Varredura Diferencial de Calorimetria , Cristalização , Estabilidade de Medicamentos , Inaladores de Pó Seco , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Porosidade , Pós , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Difração de Raios X
17.
J Mol Struct ; 1083: 286-299, 2015 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-25750458

RESUMO

The single enantiomer (1S,2S)-2-benzyl-2,3-dihydro-2-(1H-inden-2-yl)-1H-inden-1-ol (2), has recently been synthesized and isolated from its corresponding diastereoisomer (1). The molecular and crystal structures of this novel compound have been fully analyzed. The relative and absolute configurations have been determined by using a combination of analytical tools including X-ray crystallography, X-ray Powder Diffraction (XRPD) analysis and Nuclear Magnetic Resonance (NMR) spectroscopy.

18.
Pharm Res ; 31(10): 2735-47, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24867420

RESUMO

PURPOSE: Some patients are unable to generate the peak inspiratory flow rate (PIFR) necessary to de-agglomerate drug particles from dry powder inhalers (DPIs). In this study we tested the hypothesis that the acoustic parameters of an inhalation are related to the PIFR and hence reflect drug delivery. METHODS: A sensitivity analysis of the relationship of the acoustics of inhalation to simultaneously recorded airflow, in a cohort of volunteers (n = 92) was performed. The Next Generation Impactor (NGI) was used to assess in vitro drug delivery from salmeterol/fluticasone and salbutamol Diskus™ DPIs. Fine particle fraction, FPF, (<5 µm) was measured at 30-90 l/min for 2-6 s and correlated with acoustically determined flow rate (IFRc). In pharmacokinetic studies using a salbutamol (200 µg) Diskus™, volunteers inhaled either at maximal or minimal effort on separate days. RESULTS: PIFRc was correlated with spirometrically determined values (R (2) = 0.88). In in vitro studies, FPF increased as both flow rate and inhalation duration increased for the salmeterol/fluticasone Diskus™ (Adjusted R (2) = 0.95) and was proportional to flow rate only for the salbutamol Diskus™ (Adjusted R (2) = 0.71). In pharmacokinetic studies, blood salbutamol levels measured at 20 min were significantly lower when PIFRc was less than 60 l/min, p < 0.0001. CONCLUSION: Acoustically-determined PIFR is a suitable method for estimating drug delivery and for monitoring inhalation technique over time.


Assuntos
Acústica/instrumentação , Sistemas de Liberação de Medicamentos/instrumentação , Inaladores de Pó Seco , Inalação/fisiologia , Capacidade Inspiratória/fisiologia , Administração por Inalação , Aerossóis , Albuterol/administração & dosagem , Albuterol/análogos & derivados , Albuterol/sangue , Albuterol/farmacocinética , Androstadienos/administração & dosagem , Androstadienos/sangue , Androstadienos/farmacocinética , Combinação de Medicamentos , Desenho de Equipamento , Combinação Fluticasona-Salmeterol , Humanos
19.
Eur J Pharm Sci ; 196: 106752, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38518998

RESUMO

Poorly water-soluble drugs present a significant challenge in the development of oral solid dosage forms (OSDs). In formulation development the appropriate use of excipients to adjust solubility, and the choice of manufacturing method and pharmaceutical processes to obtain a dosage form to meet the needs of the patient group, is crucial. Preparing an amorphous solid dispersion (ASD) is a well-established method for solubility enhancement, and spray drying (SD) a common manufacturing method. However, the poor flowability of spray dried materials poses a significant challenge for downstream processing. Promoting sustainability in OSD development involves embracing a versatile formulation design, which enables a broader spectrum of patients to use the product, as opposed to altering existing dosage forms retrospectively. The objective of the current study was to develop a formulation of spray dried indomethacin ASD suited to the production, by direct compression, of instant release paediatric minitablets. Excipients evaluated were PVP or HPMCAS in solid dispersions at the preformulation phase, and MCC and lactose as a filler in direct compression. From the studied formulations, a 3:1 ratio blend of Vivapur 200/Pharmatose 200 M (MCC/lactose) with 0.5% (w/w) magnesium stearate was found to be the most promising in tableting, and minitablets containing a 6.22% content of spray-dried ASD of indomethacin/PVP K 29-32 could be obtained with desired tablet hardness and pharmaceutical quality, complying with tests of weight variation and fast disintegration in an aqueous environment. As a case example, this study provides a good foundation for further studies in harnessing a sustainable approach to the development of pharmaceutical formulations that can appropriately serve different patient sub-populations.

20.
Mol Pharm ; 10(10): 3628-39, 2013 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-23961942

RESUMO

In order to investigate the effect of using different solid state forms and specific surface area (TBET) of active pharmaceutical ingredients on tabletability and dissolution performance, the mono- and dihydrated crystalline forms of chlorothiazide sodium and chlorothiazide potassium (CTZK) salts were compared to alternative anhydrous and amorphous forms, as well as to amorphous microparticles of chlorothiazide sodium and potassium which were produced by spray drying and had a large specific surface area. The tablet hardness and tensile strength, porosity, and specific surface area of single-component, convex tablets prepared at different compression pressures were characterized. Results confirmed the complexity of the compressibility mechanisms. In general it may be concluded that factors such as solid-state form (crystalline vs amorphous), type of hydration (presence of interstitial molecules of water, dehydrates), or specific surface area of the material have a direct impact on the tabletability of the powder. It was observed that, for powders of the same solid state form, those with a larger specific surface area compacted well, and better than powders of a lower surface area, even at relatively low compression pressures. Compacts prepared at lower compression pressures from high surface area porous microparticles presented the shortest times to dissolve, when compared with compacts made of equivalent materials, which had to be compressed at higher compression pressures in order to obtain satisfactory compacts. Therefore, materials composed of nanoparticulate microparticles (NPMPs) may be considered as suitable for direct compaction and possibly for inclusion in tablet formulations as bulking agents, APIs, carriers, or binders due to their good compactibility performance.


Assuntos
Clorotiazida/química , Composição de Medicamentos , Interações Hidrofóbicas e Hidrofílicas , Pós/química , Comprimidos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA