RESUMO
Maintaining chromatin integrity at the repetitive non-coding DNA sequences underlying centromeres is crucial to prevent replicative stress, DNA breaks and genomic instability. The concerted action of transcriptional repressors, chromatin remodelling complexes and epigenetic factors controls transcription and chromatin structure in these regions. The histone chaperone complex ATRX/DAXX is involved in the establishment and maintenance of centromeric chromatin through the deposition of the histone variant H3.3. ATRX and DAXX have also evolved mutually-independent functions in transcription and chromatin dynamics. Here, using paediatric glioma and pancreatic neuroendocrine tumor cell lines, we identify a novel ATRX-independent function for DAXX in promoting genome stability by preventing transcription-associated R-loop accumulation and DNA double-strand break formation at centromeres. This function of DAXX required its interaction with histone H3.3 but was independent of H3.3 deposition and did not reflect a role in the repression of centromeric transcription. DAXX depletion mobilized BRCA1 at centromeres, in line with BRCA1 role in counteracting centromeric R-loop accumulation. Our results provide novel insights into the mechanisms protecting the human genome from chromosomal instability, as well as potential perspectives in the treatment of cancers with DAXX alterations.
Assuntos
Centrômero , Quebras de DNA de Cadeia Dupla , Chaperonas Moleculares , Proteínas Nucleares , Estruturas R-Loop , Proteína Nuclear Ligada ao X , Criança , Humanos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Centrômero/metabolismo , Cromatina , Proteínas Correpressoras/metabolismo , DNA , Histonas/genética , Histonas/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Proteína Nuclear Ligada ao X/genética , Proteína Nuclear Ligada ao X/metabolismoRESUMO
BACKGROUND: Telomeres are terminal chromosomal elements that are essential for the maintenance of genomic integrity. The measurement of telomere content provides useful diagnostic and prognostic information, and fluorescent methods have been developed for this purpose. However, fluorescent-based tissue assays are cumbersome for investigators to undertake, both in research and clinical settings. METHODS: A robust chromogenic in situ hybridization (CISH) approach was developed to visualize and quantify telomere content at single cell resolution in human prostate tissues, both frozen and formalin-fixed, paraffin-embedded (FFPE). RESULTS: This new assay (telomere chromogenic in situ hybridization ["Telo-CISH"]) produces permanently stained slides that are viewable with a standard light microscope, thus avoiding the need for specialized equipment and storage. The assay is compatible with standard immunohistochemistry, thereby allowing simultaneous assessment of histomorphology, identification of specific cell types, and assessment of telomere status. In addition, Telo-CISH eliminates the problem of autofluorescent interference that frequently occurs with fluorescent-based methods. Using this new assay, we demonstrate successful application of Telo-CISH to help identify precancerous lesions in the prostate by the presence of markedly short telomeres specifically in the luminal epithelial cells. CONCLUSIONS: In summary, with fewer restrictions on the types of tissues that can be tested, and increased histologic information provided, the advantages presented by this novel chromogenic assay should extend the applicability of tissue-based telomere length assessment in research and clinical settings.
Assuntos
Lesões Pré-Cancerosas , Próstata , Masculino , Humanos , Hibridização in Situ Fluorescente/métodos , Hibridização In Situ , Lesões Pré-Cancerosas/diagnóstico , Lesões Pré-Cancerosas/genética , TelômeroRESUMO
Basal cell carcinoma (BCC) of the prostate is a rare tumor. Compared with the more common acinar adenocarcinoma (AAC) of the prostate, BCCs show features of basal cell differentiation and are thought to be biologically distinct from AAC. The spectrum of molecular alterations of BCC has not been comprehensively described, and genomic studies are lacking. Herein, whole genome sequencing was performed on archival formalin-fixed, paraffin-embedded specimens of two cases with BCC. Prostatic BCCs were characterized by an overall low copy number and mutational burden. Recurrent copy number loss of chromosome 16 was observed. In addition, putative driver gene alterations in KIT, DENND3, PTPRU, MGA, and CYLD were identified. Mechanistically, depletion of the CYLD protein resulted in increased proliferation of prostatic basal cells in vitro. Collectively, these studies show that prostatic BCC displays distinct genomic alterations from AAC and highlight a potential role for loss of chromosome 16 in the pathogenesis of this rare tumor type.
Assuntos
Carcinoma Basocelular , Neoplasias da Próstata , Neoplasias Cutâneas , Masculino , Humanos , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Próstata/patologia , Carcinoma Basocelular/genética , Carcinoma Basocelular/patologia , Neoplasias Cutâneas/patologia , Genômica , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores , Fatores de Troca do Nucleotídeo GuaninaRESUMO
Prostate adenocarcinoma is the second most commonly diagnosed cancer in men worldwide, and the initiating factors are unknown. Oncogenic TMPRSS2:ERG (ERG+) gene fusions are facilitated by DNA breaks and occur in up to 50% of prostate cancers. Infection-driven inflammation is implicated in the formation of ERG+ fusions, and we hypothesized that these fusions initiate in early inflammation-associated prostate cancer precursor lesions, such as proliferative inflammatory atrophy (PIA), prior to cancer development. We investigated whether bacterial prostatitis is associated with ERG+ precancerous lesions in unique cases with active bacterial infections at the time of radical prostatectomy. We identified a high frequency of ERG+ non-neoplastic-appearing glands in these cases, including ERG+ PIA transitioning to early invasive cancer. These lesions were positive for ERG protein by immunohistochemistry and ERG messenger RNA by in situ hybridization. We additionally verified TMPRSS2:ERG genomic rearrangements in precursor lesions using tricolor fluorescence in situ hybridization. Identification of rearrangement patterns combined with whole-prostate mapping in three dimensions confirmed multiple (up to eight) distinct ERG+ precancerous lesions in infected cases. We further identified the pathogen-derived genotoxin colibactin as a potential source of DNA breaks in clinical cases as well as cultured prostate cells. Overall, we provide evidence that bacterial infections can initiate driver gene alterations in prostate cancer. In addition, our observations indicate that infection-induced ERG+ fusions are an early alteration in the carcinogenic process and that PIA may serve as a direct precursor to prostate cancer.
Assuntos
Infecções Bacterianas/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/microbiologia , Serina Endopeptidases/genética , Atrofia , Infecções Bacterianas/complicações , Infecções Bacterianas/patologia , Quebras de DNA , Humanos , Masculino , Fusão Oncogênica , Peptídeos/genética , Policetídeos , Próstata/microbiologia , Próstata/patologia , Prostatectomia , Neoplasias da Próstata/patologia , Neoplasias da Próstata/cirurgia , Prostatite/genética , Prostatite/microbiologia , Prostatite/patologia , Regulador Transcricional ERG/genéticaRESUMO
BACKGROUND: While many pancreatic neuroendocrine tumours (PanNET) show indolent behaviour, predicting the biological behaviour of small nonfunctional PanNETs remains a challenge. Nonfunctional PanNETs with an epigenome and transcriptome that resemble islet alpha cells (ARX-positive) are more aggressive than neoplasms that resemble islet beta cells (PDX1-positive). In this study, we explore the ability of immunohistochemistry for ARX and PDX1 and telomere-specific fluorescence in situ hybridisation (FISH) for alternative lengthening of telomeres (ALT) to predict recurrence. METHODS: Two hundred fifty-six patients with PanNETs were identified, and immunohistochemistry for ARX and PDX1 was performed. Positive staining was defined as strong nuclear staining in >5% of tumour cells. FISH for ALT was performed in a subset of cases. RESULTS: ARX reactivity correlated with worse disease-free survival (DFS) (P = 0.011), while there was no correlation between PDX1 reactivity and DFS (P = 0.52). ALT-positive tumours (n = 63, 31.8%) showed a significantly lower DFS (P < 0.0001) than ALT-negative tumours (n = 135, 68.2%). ARX reactivity correlated with ALT positivity (P < 0.0001). Among nonfunctional tumours, recurrence was noted in 18.5% (30/162) of ARX-positive tumours and 7.5% (5/67) of ARX-negative tumours. Among WHO grade 1 and 2 PanNETs with ≤2 cm tumour size, 14% (6/43) of ARX-positive tumours recurred compared to 0 of 33 ARX-negative tumours and 33.3% (3/9) ALT-positive tumours showed recurrence versus 4.4% (2/45) ALT-negative tumours. CONCLUSION: Immunohistochemistry for ARX and ALT FISH status may aid in distinguishing biologically indolent cases from aggressive small low-grade PanNETs, and help to identify patients who may preferentially benefit from surgical intervention.
Assuntos
Tumores Neuroendócrinos , Neoplasias Pancreáticas , Humanos , Tumores Neuroendócrinos/diagnóstico , Tumores Neuroendócrinos/patologia , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/patologia , Intervalo Livre de Doença , Telômero/patologia , Fatores de Transcrição , Proteínas de HomeodomínioRESUMO
Primary non-functional pancreatic neuroendocrine tumors (NF-PanNETs) are a heterogeneous group of neuroendocrine neoplasms that display highly variable clinical behavior. Therefore, NF-PanNETs often present clinical teams with a dilemma: the uncertain metastatic potential of the tumor has to be weighed against the morbidity associated with surgical resection. Thus, rather than utilizing current radiologic thresholds, there is an urgent need for improved prognostic biomarkers. Recent studies aimed at understanding the epigenetic underpinnings of NF-PanNETs have led to the identification of tumor subgroups based on histone modification and DNA methylation patterns. These molecular profiles tend to resemble the cellular origins of PanNETs. Subsequent retrospective analyses have demonstrated that these molecular signatures are of prognostic value and, importantly, may be useful in the preoperative setting. These studies have highlighted that sporadic NF-PanNETs displaying biomarkers associated with disease progression and poor prognosis, such as alternative lengthening of telomeres, inactivating alpha thalassemia/mental retardation X-linked (ATRX) or death domain-associated protein (DAXX) gene mutations, or copy number variations, more often display alpha cell characteristics. Conversely, NF-PanNETs with beta cell characteristics often lack these unfavorable biomarkers. Alternative lengthening of telomeres, transcription factor protein expression, and possibly DNA methylation can be assessed in endoscopic ultrasound-guided tumor biopsies. Prospective studies focusing on cell-of-origin and epigenetic profile-driven decision making prior to surgery are likely to be routinely implemented into clinical practice in the near future. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Assuntos
Biomarcadores Tumorais/genética , Carcinoma Neuroendócrino/genética , Linhagem da Célula/genética , Epigênese Genética , Neoplasias Pancreáticas/genética , Animais , Carcinoma Neuroendócrino/patologia , Carcinoma Neuroendócrino/terapia , Tomada de Decisão Clínica , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença , Humanos , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/terapia , Fenótipo , Valor Preditivo dos Testes , PrognósticoRESUMO
Cancer cells maintain telomere lengths through telomerase activity or by alternative lengthening of telomeres (ALT). Using an engineered model system, a recent study by Min et al. reveals that the combination of BLM-mediated DNA resection and telomere clustering, a characteristic of ALT telomeres, catalyzes RAD52-dependent mitotic DNA synthesis (MiDAS) specifically at telomeres to drive ALT activity.
Assuntos
Telomerase/genética , Telômero , DNA , Replicação do DNA , Homeostase do Telômero , TatoRESUMO
In patients with prostate cancer, the duration of remission after treatment with androgen deprivation therapies (ADTs) varies dramatically. Clinical experience has demonstrated difficulties in predicting individual risk for progression due to chemoresistance. Drug combinations that inhibit androgen biosynthesis (e.g., abiraterone acetate) and androgen signaling (e.g., enzalutamide or apalutamide) have proven so effective that new forms of ADT resistance are emerging. In particular, prostate cancers with a neuroendocrine transcriptional signature, which demonstrate greater plasticity, and potentially, increased predisposition to metastasize, are becoming more prevalent. Notably, these subtypes had in fact been relatively rare before the widespread success of novel ADT regimens. Therefore, better understanding of these resistance mechanisms and potential alternative treatments are necessary to improve progression-free survival for patients treated with ADT. Targeting the bromodomain and extra-terminal (BET) protein family, specifically BRD4, with newer investigational agents may represent one such option. Several families of chromatin modifiers appear to be involved in ADT resistance and targeting these pathways could also offer novel approaches. However, the limited transcriptional and genomic information on ADT resistance mechanisms, and a serious lack of patient diversity in clinical trials, demand profiling of a much broader clinical and demographic range of patients, before robust conclusions can be drawn and a clear direction established.
Assuntos
Antagonistas de Androgênios , Proteínas do Tecido Nervoso/metabolismo , Neoplasias de Próstata Resistentes à Castração , Receptores de Superfície Celular/metabolismo , Antagonistas de Androgênios/uso terapêutico , Androgênios , Proteínas de Ciclo Celular , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Masculino , Proteínas Nucleares , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Fatores de Transcrição , Resultado do TratamentoRESUMO
PURPOSE: To evaluate targetable mutations and molecular genetic pathways in conjunctival melanoma with clinical correlation. DESIGN: Observational case series. PARTICIPANTS: Patients with conjunctival melanoma. MAIN OUTCOME MEASURES: Mutational profile of the tumor by next-generation sequencing (NGS), alternative lengthening of telomeres (ALT) by fluorescence in situ hybridization (FISH), and ATRX immunohistochemistry. Outcomes at 2 years and 5 years of tumor-related metastasis and death were recorded. RESULTS: Of the 101 patients, mean age at presentation was 60 years, 52% were male, and 88% were White. The NGS panels initially targeted BRAF only (n = 6, 6%), BRAF/NRAS (n = 17, 17%), and BRAF/NRAS/NF1 (n = 10, 10%). Sixty-eight tumors were tested with the expanded 592-gene panel. Next-generation sequencing identified high-frequency mutations in NF1 (29/74, 39%), BRAF (31/101, 31%), NRAS (25/95, 26%), and ATRX (17/68, 25%). Of those with an ATRX mutation, 12 (71%) had an additional NF1 mutation. A subset analysis of 21 melanomas showed that the ATRX mutation was associated with loss of ATRX protein expression and ALT. Loss of ATRX expression and ALT were present in both intraepithelial and invasive tumors, suggesting that an ATRX mutation is an early event in conjunctival melanoma progression. The NF1 and ATRX mutations were associated with tarsal (vs. nontarsal) tumors (NF1: 28% vs. 9%, P = 0.035, ATRX: 41% vs. 14%, P = 0.021) and orbital (vs. nonorbital) tumors (ATRX: 24% vs. 2%, P = 0.007). ATRXMUT (vs. ATRXWT) tumors were associated with a lower 2-year rate of metastasis (0% vs. 24%, P = 0.005). NRASMUT (vs. NRASWT) tumors were associated with a greater 2-year rate of metastasis (28% vs. 14%, P = 0.07) and death (16% vs. 4%, P = 0.04), with a 5-fold increased risk of death (relative risk, 5.45 [95% confidence interval, 1.11-26.71], P = 0.039). CONCLUSIONS: This study confirms the high frequency of previously documented BRAF and NRAS mutations and recently reported ATRX and NF1 mutations in conjunctival melanoma. An NRAS mutation implied increased risk for metastasis and death. Loss of ATRX and ALT may be early events in conjunctival melanoma development.
Assuntos
Neoplasias da Túnica Conjuntiva , Melanoma , Neoplasias Cutâneas , Neoplasias da Túnica Conjuntiva/genética , Neoplasias da Túnica Conjuntiva/patologia , Análise Mutacional de DNA , Feminino , Humanos , Hibridização in Situ Fluorescente , Masculino , Melanoma/genética , Melanoma/patologia , Mutação , Proteínas Proto-Oncogênicas B-raf/genética , Neoplasias Cutâneas/patologiaRESUMO
We reported previously that high numbers of mast cells in benign (extra-tumoral) regions of the prostate are associated with worse outcomes after radical prostatectomy including biochemical recurrence and the development of metastases. Herein, with a cohort of 384 men, we performed mast cell subtyping and report that higher minimum number of the tryptase-only (MCT ) subset of extra-tumoral mast cells is associated with increased risk of biochemical recurrence (comparing highest to lowest tertiles: HR 2.32, 95% CI 1.37-3.93; P-trend = 0.002), metastases (HR 3.62, 95% CI 1.75-7.47; P-trend 0.001), and death from prostate cancer (HR 2.87, 95% CI 1.19-6.95; P-trend = 0.02). Preliminary RNA sequencing and comparison of benign versus cancer tissue mast cells revealed differential expression of additional site-specific genes. We further demonstrate that the genes CXCR4 and TFE3 are more highly expressed in tumor-infiltrating mast cells as well as other tumor-infiltrating immune cells and in tumor cells, respectively, and represent an altered tumor microenvironment. KIT variants were also differentially expressed in benign versus cancer tissue mast cells, with KIT variant 1 (GNNK+ ) mast cells identified as more prevalent in extra-tumoral regions of the prostate. Finally, using an established mouse model, we found that mast cells do not infiltrate Hi-Myc tumors, providing a model to specifically examine the role of extra-tumoral mast cells in tumorigenesis. Hi-Myc mice crossed to mast cell knockout (Wsh) mice and aged to 1 year revealed a higher degree of pre-invasive lesions and invasive cancer in wild-type mice versus heterozygous and knockout mice. This suggests a dosage effect where higher numbers of extra-tumoral mast cells resulted in higher cancer invasion. Overall, our studies provide further evidence for a role of extra-tumoral mast cells in driving adverse prostate cancer outcomes. © 2020 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Assuntos
Mastócitos/imunologia , Mastócitos/patologia , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/patologia , Microambiente Tumoral/imunologia , Animais , Humanos , Masculino , Camundongos , FenótipoRESUMO
A new evaluation of previously published data suggested to us that the accumulation of mutations might slow, rather than increase, as individuals age. To explain this unexpected finding, we hypothesized that normal stem cell division rates might decrease as we age. To test this hypothesis, we evaluated cell division rates in the epithelium of human colonic, duodenal, esophageal, and posterior ethmoid sinonasal tissues. In all 4 tissues, there was a significant decrease in cell division rates with age. In contrast, cell division rates did not decrease in the colon of aged mice, and only small decreases were observed in their small intestine or esophagus. These results have important implications for understanding the relationship between normal stem cells, aging, and cancer. Moreover, they provide a plausible explanation for the enigmatic age-dependent deceleration in cancer incidence in very old humans but not in mice.
Assuntos
Envelhecimento , Divisão Celular , Desaceleração , Mutação , Neoplasias/epidemiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Colo/citologia , Colo/metabolismo , Duodeno/citologia , Duodeno/metabolismo , Esôfago/citologia , Esôfago/metabolismo , Humanos , Incidência , Antígeno Ki-67/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/patologia , Seios Paranasais/citologia , Seios Paranasais/metabolismo , Adulto JovemRESUMO
Subsets of high-grade gliomas, including glioblastoma (GBM), are known to utilize the alternative lengthening of telomeres (ALT) pathway for telomere length maintenance. However, the telomere maintenance profile of one subtype of GBM-giant cell GBM-has not been extensively studied. Here, we investigated the prevalence of ALT, as well as ATRX and SMARCAL1 protein loss, in a cohort of classic giant cell GBM and GBM with giant cell features. To determine the presence of ALT, a telomere-specific fluorescence in situ hybridization assay was performed on 15 cases of classic giant cell GBM, 28 additional GBMs found to have giant cell features, and 1 anaplastic astrocytoma with giant cell features. ATRX, SMARCAL1, and IDH1 protein status were assessed in a proportion of cases by immunohistochemistry and were compared to clinical-pathologic and molecular characteristics. In the overall cohort of 44 cases, 19 (43%) showed evidence of ALT. Intriguingly, of the ALT-positive cases, only 9 (47.4%) displayed loss of the ALT suppressor ATRX by immunohistochemistry. Since inactivating mutations in SMARCAL1 have been identified in ATRX wild-type ALT-positive gliomas, we developed an immunohistochemistry assay for SMARCAL1 protein expression using genetically validated controls. Of the 19 ALT-positive cases, 6 (31.5%) showed loss or mis-localization of SMARCAL1 by immunohistochemistry. Of these cases, four retained ATRX protein expression, while two cases also displayed ATRX loss. Additionally, we assessed five cases from which multiple temporal samples were available and ALT status was concordant between both tumor biopsies. In summary, we have identified a subset of giant cell GBM that utilize the ALT telomere maintenance mechanism. Importantly, in addition to ATRX loss, ALT-positive tumors harboring SMARCAL1 alterations are prevalent in giant cell GBM.
Assuntos
Neoplasias Encefálicas/metabolismo , DNA Helicases/metabolismo , Glioblastoma/metabolismo , Homeostase do Telômero/genética , Adolescente , Adulto , Idoso , Biópsia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Pré-Escolar , DNA Helicases/genética , Feminino , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Masculino , Pessoa de Meia-Idade , Mutação , Proteína Nuclear Ligada ao X/genética , Proteína Nuclear Ligada ao X/metabolismo , Adulto JovemRESUMO
BACKGROUND AND AIMS: Chromophobe hepatocellular carcinoma (HCC) is a newly included subtype of HCC in the 5th edition of the WHO classification with distinctive histological features (chromophobic cytoplasm with anaplastic nuclei and pseudocyst formation) and is strongly associated with the alternative lengthening of telomeres (ALT) phenotype. However, the clinicopathologic characterization and molecular features of chromophobe HCC are unknown. METHODS: To comprehensively characterize chromophobe HCC, whole exome sequencing, copy number variation, and transcriptomic analyses were performed in 224 surgically resected HCC cases. Additionally, telomere-specific fluorescence in situ hybridization was used to assess ALT. These genomic profiles and ALT status were compared with clinicopathological features among subtypes of HCC, particularly chromophobe HCC and conventional HCC. RESULTS: Chromophobe HCC was observed in 10.3% (23/224) cases and, compared to conventional HCC, was more frequent in females (P = .023). The overall and recurrence-free survival outcomes were similar between patients with chromophobe HCC and conventional HCC. However, chromophobe HCC displayed significantly more upregulated genes involving cell cycle progression and DNA repair. Additionally, ALT was significantly enriched in chromophobe HCC (87%; 20/23) compared to conventional HCC (2.2%, 4/178; P < .001). Somatic mutations in ALT-associated genes, including ATRX, SMARCAL1, FANCG, FANCM, SP100, TSPYL5, and RAD52 were more frequent in chromophobe HCC (30.4%, 7/23 cases) compared to conventional HCC (11.8%, 21/178 cases; P = .024). CONCLUSIONS: Chromophobe HCC is a unique subtype of HCC with a prevalence of ~10%. Compared to conventional HCC, chromophobe HCC is associated with female predominance and ALT, although overall and recurrence-free outcomes are similar to conventional HCC.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/genética , Variações do Número de Cópias de DNA , DNA Helicases/genética , Feminino , Humanos , Hibridização in Situ Fluorescente , Neoplasias Hepáticas/genética , Recidiva Local de Neoplasia , Proteínas Nucleares/genética , Telômero , Homeostase do Telômero , Proteína Nuclear Ligada ao X/genéticaRESUMO
Intraductal tubulopapillary neoplasm (ITPN) is a distinct precancerous lesion in the pancreas with unique clinical and molecular features. Although in vitro studies in two-dimensional culture have led to numerous important insights in pancreatic cancer, such models are currently lacking for precancerous lesions. In this study, we report the generation and characterization of a cell line from a human pancreatic ITPN. Neoplastic cells were initially cultured in a three-dimensional organoid system, followed by transfer to two-dimensional culture. RNA sequencing revealed a gene expression profile consistent with pancreatic ductal origin, and whole genome sequencing identified many somatic mutations (including in genes involved in DNA repair and Wnt signaling) and structural rearrangements. In vitro characterization of the tumorigenic potential demonstrated a phenotype between that of normal pancreatic ductal cells and cancer cell lines. This cell line represents a valuable resource for interrogation of unique ITPN biology, as well as precancerous pancreatic lesions more generally.
Assuntos
Linhagem Celular Tumoral , Neoplasias Intraductais Pancreáticas , Idoso , Animais , Feminino , Humanos , Masculino , Camundongos , Camundongos Nus , FenótipoRESUMO
OBJECTIVE: The aim of this study was to investigate the key molecular alterations in small primary pancreatic neuroendocrine tumors (PanNETs) associated with the development of liver metastases. BACKGROUND: Well-differentiated PanNETs with small size are typically indolent; however, a limited subset metastasize to the liver. METHODS: A total of 87 small primary PanNETs (<3âcm), including 32 metastatic cases and 55 nonmetastatic cases after a 5-year follow-up, were immunolabeled for DAXX/ATRX and analyzed for alternative lengthening of telomeres (ALT) by Fluorescence In Situ Hybridization. A subset of these cases, 24 that metastasized and 24 that did not metastasize, were assessed by targeted next-generation sequencing and whole-genome copy number variation. RESULTS: In the entire cohort, high Ki-67 (OR 1.369; 95% CI 1.121-1.673; P = 0.002), N-stage (OR 4.568; 95% CI 1.458-14.312; P = 0.009), and ALT-positivity (OR 3.486; 95% CI 1.093-11.115; P = 0.035) were independently associated with liver metastases. In the subset assessed by next-generation sequencing and copy number variation analysis, 3 molecular subtypes with differing risks of liver metastases were identified. Group 1 (n = 15; 73% metastasized) was characterized by recurrent chromosomal gains, CN-LOH, DAXX mutations, and ALT-positivity. Group 2 (n = 19; 42% metastasized, including 5 G1 tumors) was characterized by limited copy number alterations and mutations. Group 3 (n = 14; 35% metastasized) were defined by chromosome 11 loss. CONCLUSIONS: We identified genomic patterns of small PanNETs associated with a different risk for liver metastases. Molecular alterations, such as DAXX mutations, chromosomal gains, and ALT, are associated with an increased risk of metastasis in small PanNETs. Therefore, targeted sequencing and/or ALT analysis may help in the clinical decisions for these small PanNETs.
Assuntos
Neoplasias Hepáticas/genética , Neoplasias Hepáticas/secundário , Tumores Neuroendócrinos/genética , Tumores Neuroendócrinos/secundário , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Variações do Número de Cópias de DNA , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Hibridização in Situ Fluorescente , Masculino , Pessoa de Meia-Idade , Mutação , Polimorfismo de Nucleotídeo Único , Risco , Homeostase do TelômeroRESUMO
Telomeres are nucleoprotein complexes located at the termini of eukaryotic chromosomes that prevent exonucleolytic degradation and end-to-end chromosomal fusions. Cancers often have critically shortened, dysfunctional telomeres contributing to genomic instability. Telomere shortening has been reported in a wide range of precancerous lesions and invasive carcinomas. However, the role of telomere alterations, including the presence of alternative lengthening of telomeres (ALT), has not been studied in pituitary adenomas. Telomere length and the presence of ALT were assessed directly at the single cell level using a telomere-specific fluorescence in situ hybridization assay in tissue microarrays. Tumors were characterized as either ALT-positive or having short, normal, or long telomere lengths and then these categories were compared with clinicopathological characteristics. ATRX and DAXX expression was studied through immunohistochemistry. We characterized a discovery set of 106 pituitary adenomas including both functional and nonfunctional subsets (88 primary, 18 recurrent). Telomere lengths were estimated and we observed 64 (59.4%) cases with short, 39 (36.8%) cases with normal, and 0 (0%) cases with long telomeres. We did not observe significant differences in the clinicopathological characteristics of the group with abnormally shortened telomeres compared to the group with normal telomeres. However, three pituitary adenomas were identified as ALT-positive of which two were recurrent tumors. Two of these three ALT-positive cases had alterations in either of the chromatin remodeling proteins, ATRX and DAXX, which are routinely altered in other ALT-positive tumor subtypes. In a second cohort of 32 recurrent pituitary adenomas from 22 patients, we found that the tumors from 36% of patients (n = 8) were ALT-positive. This study demonstrates that short telomere lengths are prevalent in pituitary adenomas and that ALT-positive pituitary adenomas are enriched in recurrent disease.
Assuntos
Adenoma/genética , Proteínas Correpressoras/biossíntese , Chaperonas Moleculares/biossíntese , Neoplasias Hipofisárias/genética , Telômero/metabolismo , Proteína Nuclear Ligada ao X/biossíntese , Adenoma/patologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias Hipofisárias/patologia , Homeostase do Telômero/fisiologia , Adulto JovemRESUMO
BACKGROUND: Given translational research challenges, multidisciplinary team science is promoted to increase the likelihood of moving from discovery to health effect. We present a case study documenting the utility of multidisciplinary team science in prostate cancer tissue biomarker validation. METHODS: We used primary data generated by a team consisting of a pathologist, cancer biologists, a biostatistician, and epidemiologists. We examined their contributions by phase of biomarker evaluation to identify when, through the practice of team science, threats to internal validity were recognized and solved. Next, we quantified the extent of bias avoided in evaluating the association of Ki67 (immunohistochemistry), stromal cell telomere length (fluorescence in situ hybridization), and microRNA (miRNA) (miR-21, miR-141, miR-221; quantitative RT-PCR) with prostate cancer risk or recurrence in nested case-control studies. RESULTS: Threats to validity were tissue storage time (Ki67, miRNA) and laboratory equipment maintenance (telomeres). Solutions were all in the data analysis phase and involved using tissue storage-time specific cutpoints and/or batch-specific cutpoints. Bias in the regression coefficient for quantiles of each biomarker ranged from 24% to 423%, and the coefficient for the test for trend ranged from 15% to 910%. The interpretation of the associations changed as follows: Ki67, null to positive; stromal cell telomere length, null to positive; miR-21 and miR-141 remained null; miR-221, weak to moderate inverse. CONCLUSIONS: In this case study, we documented the inferential benefits of multidisciplinary team science when the team's collaboration and coordination led to the identification of threats to validity and the implementation of appropriate solutions.
Assuntos
Biomarcadores Tumorais/metabolismo , Equipe de Assistência ao Paciente , Neoplasias da Próstata/metabolismo , Pesquisa Translacional Biomédica , Estudos de Casos e Controles , Humanos , Masculino , MicroRNAs/genética , Recidiva Local de Neoplasia , Prognóstico , Reprodutibilidade dos Testes , Fatores de Risco , TelômeroRESUMO
Telomerase consists of at least two essential elements, an RNA component hTR or TERC that contains the template for telomere DNA addition and a catalytic reverse transcriptase (TERT). While expression of TERT has been considered the key rate-limiting component for telomerase activity, increasing evidence suggests an important role for the regulation of TERC in telomere maintenance and perhaps other functions in human cancer. By using three orthogonal methods including RNAseq, RT-qPCR, and an analytically validated chromogenic RNA in situ hybridization assay, we report consistent overexpression of TERC in prostate cancer. This overexpression occurs at the precursor stage (e.g. high-grade prostatic intraepithelial neoplasia or PIN) and persists throughout all stages of disease progression. Levels of TERC correlate with levels of MYC (a known driver of prostate cancer) in clinical samples and we also show the following: forced reductions of MYC result in decreased TERC levels in eight cancer cell lines (prostate, lung, breast, and colorectal); forced overexpression of MYC in PCa cell lines, and in the mouse prostate, results in increased TERC levels; human TERC promoter activity is decreased after MYC silencing; and MYC occupies the TERC locus as assessed by chromatin immunoprecipitation (ChIP). Finally, we show that knockdown of TERC by siRNA results in reduced proliferation of prostate cancer cell lines. These studies indicate that TERC is consistently overexpressed in all stages of prostatic adenocarcinoma and that its expression is regulated by MYC. These findings nominate TERC as a novel prostate cancer biomarker and therapeutic target. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasia Prostática Intraepitelial/genética , Neoplasias da Próstata/genética , Proteínas Proto-Oncogênicas c-myc/genética , RNA Interferente Pequeno/genética , RNA/genética , Telomerase/genética , Adulto , Idoso , Animais , Proliferação de Células , Genes Reporter , Humanos , Hibridização In Situ , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Próstata/patologia , Neoplasia Prostática Intraepitelial/patologia , Neoplasias da Próstata/patologia , Análise de Sequência de RNA , Telômero/genéticaRESUMO
BACKGROUND: Current and recent smoking have been associated with a greater risk of prostate cancer recurrence and mortality, though the underlying mechanism is unknown. METHODS: To determine if telomere shortening, which has been associated with poor outcomes, may be a potential underlying mechanism, we prospectively evaluated the association between smoking status and telomere length in 567 participants in the Health Professionals Follow-up Study, who were surgically treated for prostate cancer. Using tissue microarrays (TMA), we measured telomere length in cancer and benign tissue, specifically stromal cells in the same TMA spot using a telomere-specific fluorescence in situ hybridization assay. Smoking status was collected via questionnaire 2-years before diagnosis. Adjusting for age, pathologic stage and grade, the median and standard deviation of the per-cell telomere signals were determined for each man for stromal cells and cancer cells by smoking categories. In sub-analyses, we restricted to men without major co-morbidities diagnosed before prostate cancer. RESULTS: Overall, there were no associations between smoking status and telomere length or variability in stromal cells or cancer cells. However, among men without comorbidities, current smokers and former smokers who quit <10 years ago had the most variable telomere length in stromal cells (29.3% more variable than never smokers; P-trend = 0.0005) and in cancer cells (27.7% more variable than never smokers; P-trend = 0.05). Among men without comorbidities, mean telomere length did not differ by smoking status in stromal cells or cancer cells. CONCLUSION: Telomere variability in prostate cells may be one mechanism through which smoking influences poor prostate cancer outcomes.
Assuntos
Próstata/patologia , Neoplasias da Próstata/patologia , Fumar , Células Estromais/patologia , Homeostase do Telômero/fisiologia , Adulto , Idoso , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Encurtamento do Telômero/fisiologiaRESUMO
PURPOSE: Telomere length at birth sets the baseline for telomere shortening and may influence adult disease risk like cancer. Telomere length is heritable, but may also be a marker of exposures in utero, including those influencing racial differences in risk. We examined racial differences in telomere length in maternal and umbilical cord blood from male neonates, and maternal-neonate correlations to generate hypotheses. METHODS: Black and white pregnant women were recruited in 2006-2007 and followed to postpartum. Data came from questionnaires and medical records. Relative telomere length was measured by qPCR in leukocyte DNA. We estimated mean telomere length in mothers and neonates (n = 55 pairs) using linear regression and maternal-cord blood Spearman correlations, overall and by race. RESULTS: Black mothers had shorter age- and plate-adjusted telomere length (2.49, 95% CI 2.11-2.86) than whites (2.92, 95% CI 2.63-3.22; p = 0.1) and black neonates had shorter telomere length (2.58, 95% CI 2.16-3.01) than whites (3.13, 95% CI 2.79-3.47; p = 0.1), though not statistically significant. Differences were attenuated after further adjustment for maternal factors. Maternal-cord blood correlations were moderate (r = 0.53, p < 0.0001), and did not differ by race. CONCLUSION: Telomere length may differ by race at birth due to both inherited and racial differences in maternal factors. This study was for hypothesis generation and results should be followed up in larger studies.