Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
Plant Cell ; 35(9): 3522-3543, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37352123

RESUMO

Uridine diphosphate (UDP)-sugars are important metabolites involved in the biosynthesis of polysaccharides and may be important signaling molecules. UDP-glucose 4-epimerase (UGE) catalyzes the interconversion between UDP-Glc and UDP-Gal, whose biological function in rice (Oryza sativa) fertility is poorly understood. Here, we identify and characterize the botryoid pollen 1 (bp1) mutant and show that BP1 encodes a UGE that regulates UDP-sugar homeostasis, thereby controlling the development of rice anthers. The loss of BP1 function led to massive accumulation of UDP-Glc and imbalance of other UDP-sugars. We determined that the higher levels of UDP-Glc and its derivatives in bp1 may induce the expression of NADPH oxidase genes, resulting in a premature accumulation of reactive oxygen species (ROS), thereby advancing programmed cell death (PCD) of anther walls but delaying the end of tapetal degradation. The accumulation of UDP-Glc as metabolites resulted in an abnormal degradation of callose, producing an adhesive microspore. Furthermore, the UDP-sugar metabolism pathway is not only involved in the formation of intine but also in the formation of the initial framework for extine. Our results reveal how UDP-sugars regulate anther development and provide new clues for cellular ROS accumulation and PCD triggered by UDP-Glc as a signaling molecule.


Assuntos
Oryza , Oryza/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Apoptose , Pólen/metabolismo , Homeostase , Açúcares/metabolismo , Difosfato de Uridina/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Plant Cell ; 31(5): 1094-1112, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30914498

RESUMO

The plant endoplasmic reticulum-Golgi apparatus is the site of synthesis, assembly, and trafficking of all noncellulosic polysaccharides, proteoglycans, and proteins destined for the cell wall. As grass species make cell walls distinct from those of dicots and noncommelinid monocots, it has been assumed that the differences in cell-wall composition stem from differences in biosynthetic capacities of their respective Golgi. However, immunosorbence-based screens and carbohydrate linkage analysis of polysaccharides in Golgi membranes, enriched by flotation centrifugation from etiolated coleoptiles of maize (Zea mays) and leaves of Arabidopsis (Arabidopsis thaliana), showed that arabinogalactan-proteins and arabinans represent substantial portions of the Golgi-resident polysaccharides not typically found in high abundance in cell walls of either species. Further, hemicelluloses accumulated in Golgi at levels that contrasted with those found in their respective cell walls, with xyloglucans enriched in maize Golgi, and xylans enriched in Arabidopsis. Consistent with this finding, maize Golgi membranes isolated by flotation centrifugation and enriched further by free-flow electrophoresis, yielded >200 proteins known to function in the biosynthesis and metabolism of cell-wall polysaccharides common to all angiosperms, and not just those specific to cell-wall type. We propose that the distinctive compositions of grass primary cell walls compared with other angiosperms result from differential gating or metabolism of secreted polysaccharides post-Golgi by an as-yet unknown mechanism, and not necessarily by differential expression of genes encoding specific synthase complexes.


Assuntos
Glicômica , Magnoliopsida/metabolismo , Proteínas de Plantas/metabolismo , Proteoma , Proteômica , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/ultraestrutura , Transporte Biológico , Parede Celular/metabolismo , Parede Celular/ultraestrutura , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Complexo de Golgi/metabolismo , Complexo de Golgi/ultraestrutura , Magnoliopsida/genética , Magnoliopsida/ultraestrutura , Mucoproteínas/genética , Mucoproteínas/metabolismo , Proteínas de Plantas/genética , Zea mays/genética , Zea mays/metabolismo , Zea mays/ultraestrutura
3.
Plant Cell ; 31(9): 2010-2034, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31266899

RESUMO

The order of enzymatic activity across Golgi cisternae is essential for complex molecule biosynthesis. However, an inability to separate Golgi cisternae has meant that the cisternal distribution of most resident proteins, and their underlying localization mechanisms, are unknown. Here, we exploit differences in surface charge of intact cisternae to perform separation of early to late Golgi subcompartments. We determine protein and glycan abundance profiles across the Golgi; over 390 resident proteins are identified, including 136 new additions, with over 180 cisternal assignments. These assignments provide a means to better understand the functional roles of Golgi proteins and how they operate sequentially. Protein and glycan distributions are validated in vivo using high-resolution microscopy. Results reveal distinct functional compartmentalization among resident Golgi proteins. Analysis of transmembrane proteins shows several sequence-based characteristics relating to pI, hydrophobicity, Ser abundance, and Phe bilayer asymmetry that change across the Golgi. Overall, our results suggest that a continuum of transmembrane features, rather than discrete rules, guide proteins to earlier or later locations within the Golgi stack.


Assuntos
Complexo de Golgi/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Complexo de Golgi/ultraestrutura , Interações Hidrofóbicas e Hidrofílicas , Membranas Intracelulares , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Polissacarídeos/química , Polissacarídeos/metabolismo , Proteoma
4.
Plant J ; 104(1): 252-267, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32662159

RESUMO

Rhamnogalacturonan-II (RG-II) is structurally the most complex glycan in higher plants, containing 13 different sugars and 21 distinct glycosidic linkages. Two monomeric RG-II molecules can form an RG-II-borate diester dimer through the two apiosyl (Api) residues of side chain A to regulate cross-linking of pectin in the cell wall. But the relationship of Api biosynthesis and RG-II dimer is still unclear. In this study we investigated the two homologous UDP-D-apiose/UDP-D-xylose synthases (AXSs) in Arabidopsis thaliana that synthesize UDP-D-apiose (UDP-Api). Both AXSs are ubiquitously expressed, while AXS2 has higher overall expression than AXS1 in the tissues analyzed. The homozygous axs double mutant is lethal, while heterozygous axs1/+ axs2 and axs1 axs2/+ mutants display intermediate phenotypes. The axs1/+ axs2 mutant plants are unable to set seed and die. By contrast, the axs1 axs2/+ mutant plants exhibit loss of shoot and root apical dominance. UDP-Api content in axs1 axs2/+ mutants is decreased by 83%. The cell wall of axs1 axs2/+ mutant plants is thicker and contains less RG-II-borate complex than wild-type Col-0 plants. Taken together, these results provide direct evidence of the importance of AXSs for UDP-Api and RG-II-borate complex formation in plant growth and development.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Pectinas/metabolismo , Açúcares de Uridina Difosfato/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Pólen/metabolismo
5.
Hum Mol Genet ; 28(21): 3543-3551, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31423530

RESUMO

We report the case of a consanguineous couple who lost four pregnancies associated with skeletal dysplasia. Radiological examination of one fetus was inconclusive. Parental exome sequencing showed that both parents were heterozygous for a novel missense variant, p.(Pro133Leu), in the SLC35D1 gene encoding a nucleotide sugar transporter. The affected fetus was homozygous for the variant. The radiological features were reviewed, and being similar, but atypical, the phenotype was classified as a 'Schneckenbecken-like dysplasia.' The effect of the missense change was assessed using protein modelling techniques and indicated alterations in the mouth of the solute channel. A detailed biochemical investigation of SLC35D1 transport function and that of the missense variant p.(Pro133Leu) revealed that SLC35D1 acts as a general UDP-sugar transporter and that the p.(Pro133Leu) mutation resulted in a significant decrease in transport activity. The reduced transport activity observed for p.(Pro133Leu) was contrasted with in vitro activity for SLC35D1 p.(Thr65Pro), the loss-of-function mutation was associated with Schneckenbecken dysplasia. The functional classification of SLC35D1 as a general nucleotide sugar transporter of the endoplasmic reticulum suggests an expanded role for this transporter beyond chondroitin sulfate biosynthesis to a variety of important glycosylation reactions occurring in the endoplasmic reticulum.


Assuntos
Doenças Fetais/genética , Proteínas de Transporte de Monossacarídeos/genética , Osteocondrodisplasias/genética , Alelos , Animais , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Feminino , Doenças Fetais/metabolismo , Doenças Fetais/patologia , Heterozigoto , Humanos , Mutação com Perda de Função , Masculino , Camundongos , Proteínas de Transporte de Monossacarídeos/metabolismo , Mutação de Sentido Incorreto , Osteocondrodisplasias/embriologia , Osteocondrodisplasias/metabolismo
6.
Plant Cell Physiol ; 62(12): 1791-1812, 2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-34129041

RESUMO

Growth, development, structure as well as dynamic adaptations and remodeling processes in plants are largely controlled by properties of their cell walls. These intricate wall structures are mostly made up of different sugars connected through specific glycosidic linkages but also contain many glycosylated proteins. A key plant sugar that is present throughout the plantae, even before the divergence of the land plant lineage, but is not found in animals, is l-arabinose (l-Ara). Here, we summarize and discuss the processes and proteins involved in l-Ara de novo synthesis, l-Ara interconversion, and the assembly and recycling of l-Ara-containing cell wall polymers and proteins. We also discuss the biological function of l-Ara in a context-focused manner, mainly addressing cell wall-related functions that are conferred by the basic physical properties of arabinose-containing polymers/compounds. In this article we explore these processes with the goal of directing future research efforts to the many exciting yet unanswered questions in this research area.


Assuntos
Arabinose/metabolismo , Parede Celular/metabolismo , Plantas/metabolismo , Arabinose/biossíntese
7.
Int J Mol Sci ; 22(3)2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33572987

RESUMO

Glycosyltransferases (GTs) catalyze the synthesis of glycosidic linkages and are essential in the biosynthesis of glycans, glycoconjugates (glycolipids and glycoproteins), and glycosides. Plant genomes generally encode many more GTs than animal genomes due to the synthesis of a cell wall and a wide variety of glycosylated secondary metabolites. The Arabidopsis thaliana genome is predicted to encode over 573 GTs that are currently classified into 42 diverse families. The biochemical functions of most of these GTs are still unknown. In this study, we updated the JBEI Arabidopsis GT clone collection by cloning an additional 105 GT cDNAs, 508 in total (89%), into Gateway-compatible vectors for downstream characterization. We further established a functional analysis pipeline using transient expression in tobacco (Nicotiana benthamiana) followed by enzymatic assays, fractionation of enzymatic products by reversed-phase HPLC (RP-HPLC) and characterization by mass spectrometry (MS). Using the GT14 family as an exemplar, we outline a strategy for identifying effective substrates of GT enzymes. By addition of UDP-GlcA as donor and the synthetic acceptors galactose-nitrobenzodiazole (Gal-NBD), ß-1,6-galactotetraose (ß-1,6-Gal4) and ß-1,3-galactopentose (ß-1,3-Gal5) to microsomes expressing individual GT14 enzymes, we verified the ß-glucuronosyltransferase (GlcAT) activity of three members of this family (AtGlcAT14A, B, and E). In addition, a new family member (AT4G27480, 248) was shown to possess significantly higher activity than other GT14 enzymes. Our data indicate a likely role in arabinogalactan-protein (AGP) biosynthesis for these GT14 members. Together, the updated Arabidopsis GT clone collection and the biochemical analysis pipeline present an efficient means to identify and characterize novel GT catalytic activities.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Glicosiltransferases/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Parede Celular/genética , Parede Celular/metabolismo , Genoma de Planta , Glicosiltransferases/metabolismo , Mucoproteínas/genética , Mucoproteínas/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Especificidade por Substrato
8.
J Integr Plant Biol ; 63(5): 865-877, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33615714

RESUMO

A series of nucleotide sugar interconversion enzymes (NSEs) generate the activated sugar donors required for biosynthesis of cell wall matrix polysaccharides and glycoproteins. UDP-glucose 4-epimerases (UGEs) are NSEs that function in the interconversion of UDP-glucose (UDP-Glc) and UDP-galactose (UDP-Gal). The roles of UDP-glucose 4-epimerases in monocots remain unclear due to redundancy in the pathways. Here, we report a brittle plant (bp1) rice mutant that exhibits brittle leaves and culms at all growth stages. The mutant culms had reduced levels of rhamnogalacturonan I, homogalacturonan, and arabinogalactan proteins. Moreover, the mutant had altered contents of uronic acids, neutral noncellulosic monosaccharides, and cellulose. Map-based cloning demonstrated that OsBP1 encodes a UDP-glucose 4-epimerase (OsUGE2), a cytosolic protein. We also show that BP1 can form homo- and hetero-protein complexes with other UGE family members and with UDP-galactose transporters 2 (OsUGT2) and 3 (OsUGT3), which may facilitate the channeling of Gal to polysaccharides and proteoglycans. Our results demonstrate that BP1 participates in regulating the sugar composition and structure of rice cell walls.


Assuntos
Parede Celular/metabolismo , Mucoproteínas/metabolismo , Oryza/metabolismo , UDPglucose 4-Epimerase/metabolismo , Regulação da Expressão Gênica de Plantas , Mucoproteínas/genética , Oryza/genética , Pectinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , UDPglucose 4-Epimerase/genética
9.
PLoS Pathog ; 14(1): e1006765, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29346417

RESUMO

Cryptococcus neoformans, an AIDS-defining opportunistic pathogen, is the leading cause of fungal meningitis worldwide and is responsible for hundreds of thousands of deaths annually. Cryptococcal glycans are required for fungal survival in the host and for pathogenesis. Most glycans are made in the secretory pathway, although the activated precursors for their synthesis, nucleotide sugars, are made primarily in the cytosol. Nucleotide sugar transporters are membrane proteins that solve this topological problem, by exchanging nucleotide sugars for the corresponding nucleoside phosphates. The major virulence factor of C. neoformans is an anti-phagocytic polysaccharide capsule that is displayed on the cell surface; capsule polysaccharides are also shed from the cell and impede the host immune response. Xylose, a neutral monosaccharide that is absent from model yeast, is a significant capsule component. Here we show that Uxt1 and Uxt2 are both transporters specific for the xylose donor, UDP-xylose, although they exhibit distinct subcellular localization, expression patterns, and kinetic parameters. Both proteins also transport the galactofuranose donor, UDP-galactofuranose. We further show that Uxt1 and Uxt2 are required for xylose incorporation into capsule and protein; they are also necessary for C. neoformans to cause disease in mice, although surprisingly not for fungal viability in the context of infection. These findings provide a starting point for deciphering the substrate specificity of an important class of transporters, elucidate a synthetic pathway that may be productively targeted for therapy, and contribute to our understanding of fundamental glycobiology.


Assuntos
Cryptococcus neoformans/metabolismo , Proteínas Fúngicas/metabolismo , Glicoproteínas/metabolismo , Proteínas de Transporte de Nucleotídeos/metabolismo , Uridina Difosfato Xilose/metabolismo , Animais , Transporte Biológico , Criptococose/microbiologia , Criptococose/patologia , Cryptococcus neoformans/patogenicidade , Cryptococcus neoformans/ultraestrutura , Feminino , Cápsulas Fúngicas/metabolismo , Cápsulas Fúngicas/ultraestrutura , Proteínas Fúngicas/genética , Galactose/análogos & derivados , Galactose/metabolismo , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Glicoproteínas/genética , Cinética , Camundongos , Microscopia Eletrônica de Transmissão , Mutação , Proteínas de Transporte de Nucleotídeos/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte Proteico , Difosfato de Uridina/análogos & derivados , Difosfato de Uridina/metabolismo , Virulência
10.
J Exp Bot ; 71(1): 356-369, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31557299

RESUMO

Maize can grow in cool temperate climates but is often exposed to spring chilling temperatures that can affect early seedling growth. Here, we used two sister double-haploid lines displaying a contrasted tolerance to chilling to identify major determinants of long-term chilling tolerance. The chilling-sensitive (CS) and the chilling-tolerant (CT) lines were grown at 14 °C day/10 °C night for 60 d. CS plants displayed a strong reduction in growth and aerial biomass compared with CT plants. Photosynthetic efficiency was affected with an increase in energy dissipation in both lines. Chilling tolerance in CT plants was associated with higher chlorophyll content, glucose-6-phosphate dehydrogenase activity, and higher sucrose to starch ratio. Few changes in cell wall composition were observed in both genotypes. There was no obvious correlation between nucleotide sugar content and cell wall polysaccharide composition. Our findings suggest that the central starch-sucrose metabolism is one major determinant of the response to low temperature, and its modulation accounts for the ability of CT plants to cope with low temperature. This modulation seemed to be linked to a strong alteration in the biosynthesis of nucleotide sugars that, at a high level, could reflect the remobilization of carbon in response to chilling.


Assuntos
Carbono/metabolismo , Temperatura Baixa , Zea mays/metabolismo , Adaptação Fisiológica/genética , Zea mays/genética
11.
Plant Cell ; 29(1): 129-143, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28062750

RESUMO

UDP-glucuronic acid (UDP-GlcA) is the precursor of many plant cell wall polysaccharides and is required for production of seed mucilage. Following synthesis in the cytosol, it is transported into the lumen of the Golgi apparatus, where it is converted to UDP-galacturonic acid (UDP-GalA), UDP-arabinose, and UDP-xylose. To identify the Golgi-localized UDP-GlcA transporter, we screened Arabidopsis thaliana mutants in genes coding for putative nucleotide sugar transporters for altered seed mucilage, a structure rich in the GalA-containing polysaccharide rhamnogalacturonan I. As a result, we identified UUAT1, which encodes a Golgi-localized protein that transports UDP-GlcA and UDP-GalA in vitro. The seed coat of uuat1 mutants had less GalA, rhamnose, and xylose in the soluble mucilage, and the distal cell walls had decreased arabinan content. Cell walls of other organs and cells had lower arabinose levels in roots and pollen tubes, but no differences were observed in GalA or xylose contents. Furthermore, the GlcA content of glucuronoxylan in the stem was not affected in the mutant. Interestingly, the degree of homogalacturonan methylation increased in uuat1 These results suggest that this UDP-GlcA transporter plays a key role defining the seed mucilage sugar composition and that its absence produces pleiotropic effects in this component of the plant extracellular matrix.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Transporte de Nucleotídeos/metabolismo , Polissacarídeos/metabolismo , Sementes/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Parede Celular/genética , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Immunoblotting , Microscopia Confocal , Mutação , Proteínas de Transporte de Nucleotídeos/genética , Pectinas/metabolismo , Plantas Geneticamente Modificadas , Sementes/genética , Açúcares de Uridina Difosfato/metabolismo
12.
Mol Cell Proteomics ; 17(3): 413-421, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29237727

RESUMO

N-glycosylation is one of the most common protein post-translational modifications in eukaryotes and has a relatively conserved core structure between fungi, animals and plants. In plants, the biosynthesis of N-glycans has been extensively studied with all the major biosynthetic enzymes characterized. However, few studies have applied advanced mass spectrometry to profile intact plant N-glycopeptides. In this study, we use hydrophilic enrichment, high-resolution tandem mass spectrometry with complementary and triggered fragmentation to profile Arabidopsis N-glycopeptides from microsomal membranes of aerial tissues. A total of 492 N-glycosites were identified from 324 Arabidopsis proteins with extensive N-glycan structural heterogeneity revealed through 1110 N-glycopeptides. To demonstrate the precision of the approach, we also profiled N-glycopeptides from the mutant (xylt) of ß-1,2-xylosyltransferase, an enzyme in the N-glycan biosynthetic pathway. This analysis represents the most comprehensive and unbiased collection of Arabidopsis N-glycopeptides revealing an unsurpassed level of detail on the micro-heterogeneity present in N-glycoproteins of Arabidopsis. Data are available via ProteomeXchange with identifier PXD006270.


Assuntos
Proteínas de Arabidopsis/química , Glicopeptídeos/metabolismo , Glicoproteínas/química , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Glicoproteínas/metabolismo , Polissacarídeos/metabolismo
13.
Proc Natl Acad Sci U S A ; 114(16): 4261-4266, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28373556

RESUMO

In plants, L-arabinose (Ara) is a key component of cell wall polymers, glycoproteins, as well as flavonoids, and signaling peptides. Whereas the majority of Ara found in plant glycans occurs as a furanose ring (Araf), the activated precursor has a pyranose ring configuration (UDP-Arap). The biosynthesis of UDP-Arap mainly occurs via the epimerization of UDP-xylose (UDP-Xyl) in the Golgi lumen. Given that the predominant Ara form found in plants is Araf, UDP-Arap must exit the Golgi to be interconverted into UDP-Araf by UDP-Ara mutases that are located outside on the cytosolic surface of the Golgi. Subsequently, UDP-Araf must be transported back into the lumen. This step is vital because glycosyltransferases, the enzymes mediating the glycosylation reactions, are located within the Golgi lumen, and UDP-Arap, synthesized within the Golgi, is not their preferred substrate. Thus, the transport of UDP-Araf into the Golgi is a prerequisite. Although this step is critical for cell wall biosynthesis and the glycosylation of proteins and signaling peptides, the identification of these transporters has remained elusive. In this study, we present data demonstrating the identification and characterization of a family of Golgi-localized UDP-Araf transporters in Arabidopsis The application of a proteoliposome-based transport assay revealed that four members of the nucleotide sugar transporter (NST) family can efficiently transport UDP-Araf in vitro. Subsequent analysis of mutant lines affected in the function of these NSTs confirmed their role as UDP-Araf transporters in vivo.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Complexo de Golgi/metabolismo , Açúcares de Uridina Difosfato/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Transporte Biológico , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas
14.
Plant J ; 92(6): 1202-1217, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29024340

RESUMO

Measuring changes in protein or organelle abundance in the cell is an essential, but challenging aspect of cell biology. Frequently-used methods for determining organelle abundance typically rely on detection of a very few marker proteins, so are unsatisfactory. In silico estimates of protein abundances from publicly available protein spectra can provide useful standard abundance values but contain only data from tissue proteomes, and are not coupled to organelle localization data. A new protein abundance score, the normalized protein abundance scale (NPAS), expands on the number of scored proteins and the scoring accuracy of lower-abundance proteins in Arabidopsis. NPAS was combined with subcellular protein localization data, facilitating quantitative estimations of organelle abundance during routine experimental procedures. A suite of targeted proteomics markers for subcellular compartment markers was developed, enabling independent verification of in silico estimates for relative organelle abundance. Estimation of relative organelle abundance was found to be reproducible and consistent over a range of tissues and growth conditions. In silico abundance estimations and localization data have been combined into an online tool, multiple marker abundance profiling, available in the SUBA4 toolbox (http://suba.live).


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteoma , Proteômica , Biomarcadores/metabolismo , Organelas/metabolismo , Transporte Proteico
15.
Plant Cell Physiol ; 59(12): 2624-2636, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30184190

RESUMO

Pectin is a major component of primary cell walls and performs a plethora of functions crucial for plant growth, development and plant-defense responses. Despite the importance of pectic polysaccharides their biosynthesis is poorly understood. Several genes have been implicated in pectin biosynthesis by mutant analysis, but biochemical activity has been shown for very few. We used reverse genetics and biochemical analysis to study members of Glycosyltransferase Family 92 (GT92) in Arabidopsis thaliana. Biochemical analysis gave detailed insight into the properties of GALS1 (Galactan synthase 1) and showed galactan synthase activity of GALS2 and GALS3. All proteins are responsible for adding galactose onto existing galactose residues attached to the rhamnogalacturonan-I (RG-I) backbone. Significant GALS activity was observed with galactopentaose as acceptor but longer acceptors are favored. Overexpression of the GALS proteins in Arabidopsis resulted in accumulation of unbranched ß-1, 4-galactan. Plants in which all three genes were inactivated had no detectable ß-1, 4-galactan, and surprisingly these plants exhibited no obvious developmental phenotypes under standard growth conditions. RG-I in the triple mutants retained branching indicating that the initial Gal substitutions on the RG-I backbone are added by enzymes different from GALS.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Galactanos/metabolismo , Glicosiltransferases/metabolismo , Arabidopsis/genética , Parede Celular/metabolismo , Genes de Plantas , Complexo de Golgi/metabolismo , Folhas de Planta/metabolismo , Proteínas Recombinantes/isolamento & purificação , Frações Subcelulares/metabolismo , Especificidade por Substrato , Nicotiana/metabolismo
16.
Metab Eng ; 47: 170-183, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29510212

RESUMO

Cyanobacteria fix atmospheric CO2 to biomass and through metabolic engineering can also act as photosynthetic factories for sustainable productions of fuels and chemicals. The Calvin Benson cycle is the primary pathway for CO2 fixation in cyanobacteria, algae and C3 plants. Previous studies have overexpressed the Calvin Benson cycle enzymes, ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) and bifunctional sedoheptulose-1,7-bisphosphatase/fructose-1,6-bisphosphatase (hereafter BiBPase), in both plants and algae, although their impacts on cyanobacteria have not yet been rigorously studied. Here, we show that overexpression of BiBPase and RuBisCO have distinct impacts on carbon metabolism in the cyanobacterium Synechococcus sp. PCC 7002 through physiological, biochemical, and proteomic analyses. The former enhanced growth, cell size, and photosynthetic O2 evolution, and coordinately upregulated enzymes in the Calvin Benson cycle including RuBisCO and fructose-1,6-bisphosphate aldolase. At the same time it downregulated enzymes in respiratory carbon metabolism (glycolysis and the oxidative pentose phosphate pathway) including glucose-6-phosphate dehydrogenase (G6PDH). The content of glycogen was also significantly reduced while the soluble carbohydrate content increased. These results indicate that overexpression of BiBPase leads to global reprogramming of carbon metabolism in Synechococcus sp. PCC 7002, promoting photosynthetic carbon fixation and carbon partitioning towards non-storage carbohydrates. In contrast, whilst overexpression of RuBisCO had no measurable impact on growth and photosynthetic O2 evolution, it led to coordinated increase in the abundance of proteins involved in pyruvate metabolism and fatty acid biosynthesis. Our results underpin that singular genetic modifications in the Calvin Benson cycle can have far broader cellular impact than previously expected. These features could be exploited to more efficiently direct carbons towards desired bioproducts.


Assuntos
Proteínas de Bactérias , Frutose-Bifosfatase , Monoéster Fosfórico Hidrolases , Fotossíntese , Ribulose-Bifosfato Carboxilase , Synechocystis , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Metabolismo dos Carboidratos/genética , Frutose-Bifosfatase/genética , Frutose-Bifosfatase/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/metabolismo , Synechocystis/genética , Synechocystis/metabolismo
17.
Plant Physiol ; 173(1): 240-255, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27246096

RESUMO

Aliphatic and aromatic lipids are both essential structural components of the plant cuticle, an important interface between the plant and environment. Although cross links between aromatic and aliphatic or other moieties are known to be associated with the formation of leaf cutin and root and seed suberin, the contribution of aromatic lipids to the biosynthesis of anther cuticles and pollen walls remains elusive. In this study, we characterized the rice (Oryza sativa) male sterile mutant, defective pollen wall 2 (dpw2), which showed an abnormal anther cuticle, a defective pollen wall, and complete male sterility. Compared with the wild type, dpw2 anthers have increased amounts of cutin and waxes and decreased levels of lipidic and phenolic compounds. DPW2 encodes a cytoplasmically localized BAHD acyltransferase. In vitro assays demonstrated that recombinant DPW2 specifically transfers hydroxycinnamic acid moieties, using ω-hydroxy fatty acids as acyl acceptors and hydroxycinnamoyl-CoAs as acyl donors. Thus, The cytoplasmic hydroxycinnamoyl-CoA:ω-hydroxy fatty acid transferase DPW2 plays a fundamental role in male reproduction via the biosynthesis of key components of the anther cuticle and pollen wall.


Assuntos
Aciltransferases/metabolismo , Oryza/enzimologia , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Pólen/enzimologia , Pólen/crescimento & desenvolvimento , Sequência de Aminoácidos , Parede Celular/metabolismo , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Metabolismo dos Lipídeos , Lipídeos de Membrana/metabolismo , Modelos Biológicos , Mutação/genética , Oryza/genética , Oryza/ultraestrutura , Fenóis/metabolismo , Fenótipo , Pólen/ultraestrutura , Transporte Proteico , Proteínas Recombinantes/metabolismo , Análise de Sequência de Proteína , Ceras/metabolismo
18.
J Exp Bot ; 69(5): 1125-1134, 2018 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-29300997

RESUMO

UDP-xylose (UDP-Xyl) is synthesized by UDP-glucuronic acid decarboxylases, also termed UDP-Xyl synthases (UXSs). The Arabidopsis genome encodes six UXSs, which fall into two groups based upon their subcellular location: the Golgi lumen and the cytosol. The latter group appears to play an important role in xylan biosynthesis. Cytosolic UDP-Xyl is transported into the Golgi lumen by three UDP-Xyl transporters (UXT1, 2, and 3). However, while single mutants affected in the UDP-Xyl transporter 1 (UXT1) showed a substantial reduction in cell wall xylose content, a double mutant affected in UXT2 and UXT3 had no obvious effect on cell wall xylose deposition. This prompted us to further investigate redundancy among the members of the UXT family. Multiple uxt mutants were generated, including a triple mutant, which exhibited collapsed vessels and reduced cell wall thickness in interfascicular fiber cells. Monosaccharide composition, molecular weight, nuclear magnetic resonance, and immunolabeling studies demonstrated that both xylan biosynthesis (content) and fine structure were significantly affected in the uxt triple mutant, leading to phenotypes resembling those of the irx mutants. Pollination was also impaired in the uxt triple mutant, likely due to reduced filament growth and anther dehiscence caused by alterations in the composition of the cell walls. Moreover, analysis of the nucleotide sugar composition of the uxt mutants indicated that nucleotide sugar interconversion is influenced by the cytosolic UDP-Xyl pool within the cell. Taken together, our results underpin the physiological roles of the UXT family in xylan biosynthesis and provide novel insights into the nucleotide sugar metabolism and trafficking in plants.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Transporte de Nucleosídeos/genética , Uridina Difosfato Xilose/metabolismo , Xilanos/biossíntese , Xilose/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Transporte de Nucleosídeos/metabolismo
19.
Plant Cell ; 27(4): 1218-27, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25804536

RESUMO

Most glycosylation reactions require activated glycosyl donors in the form of nucleotide sugars to drive processes such as posttranslational modifications and polysaccharide biosynthesis. Most plant cell wall polysaccharides are biosynthesized in the Golgi apparatus from cytosolic-derived nucleotide sugars, which are actively transferred into the Golgi lumen by nucleotide sugar transporters (NSTs). An exception is UDP-xylose, which is biosynthesized in both the cytosol and the Golgi lumen by a family of UDP-xylose synthases. The NST-based transport of UDP-xylose into the Golgi lumen would appear to be redundant. However, employing a recently developed approach, we identified three UDP-xylose transporters in the Arabidopsis thaliana NST family and designated them UDP-XYLOSE TRANSPORTER1 (UXT1) to UXT3. All three transporters localize to the Golgi apparatus, and UXT1 also localizes to the endoplasmic reticulum. Mutants in UXT1 exhibit ∼30% reduction in xylose in stem cell walls. These findings support the importance of the cytosolic UDP-xylose pool and UDP-xylose transporters in cell wall biosynthesis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Transporte de Monossacarídeos/metabolismo , Uridina Difosfato Xilose/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Transporte de Monossacarídeos/genética
20.
J Proteome Res ; 16(12): 4273-4280, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28933156

RESUMO

Mapping of the human proteome has advanced significantly in recent years and will provide a knowledge base to accelerate our understanding of how proteins and protein networks can affect human health and disease. However, providing solutions to human health challenges will likely fail if insights are exclusively based on studies of human samples and human proteomes. In recent years, it has become evident that human health depends on an integrated understanding of the many species that make human life possible. These include the commensal microorganisms that are essential to human life, pathogens, and food species as well as the classic model organisms that enable studies of biological mechanisms. The Human Proteome Organization (HUPO) initiative on multiorganism proteomes (iMOP) works to support proteome research undertaken on nonhuman species that remain widely under-studied compared with the progress in human proteome research. This perspective argues the need for further research on multiple species that impact human life. We also present an update on recent progress in model organisms, microbiota, and food species, address the emerging problem of antibiotics resistance, and outline how iMOP activities could lead to a more inclusive approach for the human proteome project (HPP) to better support proteome research aimed at improving human health and furthering knowledge on human biology.


Assuntos
Proteoma/análise , Proteômica/métodos , Animais , Humanos , Microbiota , Modelos Animais , Pesquisa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA