RESUMO
BACKGROUND: The Hedgehog (Hh) family of secreted proteins act as extracellular messengers to control and coordinate growth and differentiation. The mechanism by which Hh protein travels across a field of cells, and results in a range of specific effects relating to the distance from the source, has been the subject of much debate. It has been suggested that the range and activity of the pathway can be linked to modifications of the Hh protein, specifically the addition of lipid groups at N- and C-terminal sites. RESULTS: Here we have addressed the potency of different forms of Hh protein by expressing these in Drosophila, where we are able to precisely establish pathway activity and range in naïve but responsive tissues. As expected, a construct that can produce all forms of Hh recapitulates endogenous signaling potencies. In comparison, expression of a form that lacks the cholesterol moiety (HhN) leads to an extended range, but the product is less effective at inducing maximal Hh responses. Expression of a point mutant that lacks the N-terminal palmitate binding site shows that the palmitoylation of Hh is absolutely required for activity in this system. CONCLUSION: We conclude that the addition of the cholesterol moiety limits the range of the protein and is required for maximal activity, while addition of palmitate is required for all activity. These findings have implications for understanding how Hedgehog proteins move, and thus their potential at influencing distant sites, and concomitantly, how modifications of the signaling protein can affect the efficacy of the response in exposed cells.
Assuntos
Colesterol , Proteínas de Drosophila/biossíntese , Proteínas de Drosophila/metabolismo , Ácido Palmítico , Processamento de Proteína Pós-Traducional , Transdução de Sinais , Animais , Sítios de Ligação/genética , Drosophila , Proteínas Hedgehog , Larva , Mutação Puntual , Asas de Animais/metabolismoRESUMO
Programmed cell death, or apoptosis, is a highly conserved cellular process that is crucial for tissue homeostasis under normal development as well as environmental stress. Misregulation of apoptosis is linked to many developmental defects and diseases such as tumour formation, autoimmune diseases and neurological disorders. In this paper, we show a novel role for the exoribonuclease Pacman/Xrn1 in regulating apoptosis. Using Drosophila wing imaginal discs as a model system, we demonstrate that a null mutation in pacman results in small imaginal discs as well as lethality during pupation. Mutant wing discs show an increase in the number of cells undergoing apoptosis, especially in the wing pouch area. Compensatory proliferation also occurs in these mutant discs, but this is insufficient to compensate for the concurrent increase in apoptosis. The phenotypic effects of the pacman null mutation are rescued by a deletion that removes one copy of each of the pro-apoptotic genes reaper, hid and grim, demonstrating that pacman acts through this pathway. The null pacman mutation also results in a significant increase in the expression of the pro-apoptotic mRNAs, hid and reaper, with this increase mostly occurring at the post-transcriptional level, suggesting that Pacman normally targets these mRNAs for degradation. Our results uncover a novel function for the conserved exoribonuclease Pacman and suggest that this exoribonuclease is important in the regulation of apoptosis in other organisms.