Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Strahlenther Onkol ; 200(9): 815-826, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38977432

RESUMO

PURPOSE: Automated treatment planning for multiple brain metastases differs from traditional planning approaches. It is therefore helpful to understand which parameters for optimization are available and how they affect the plan quality. This study aims to provide a reference for designing multi-metastases treatment plans and to define quality endpoints for benchmarking the technique from a scientific perspective. METHODS: In all, 20 patients with a total of 183 lesions were retrospectively planned according to four optimization scenarios. Plan quality was evaluated using common plan quality parameters such as conformity index, gradient index and dose to normal tissue. Therefore, different scenarios with combinations of optimization parameters were evaluated, while taking into account dependence on the number of treated lesions as well as influence of different beams. RESULTS: Different scenarios resulted in minor differences in plan quality. With increasing number of lesions, the number of monitor units increased, so did the dose to healthy tissue and the number of interlesional dose bridging in adjacent metastases. Highly modulated cases resulted in 4-10% higher V10% compared to less complex cases, while monitor units did not increase. Changing the energy to a flattening filter free (FFF) beam resulted in lower local V12Gy (whole brain-PTV) and even though the number of monitor units increased by 13-15%, on average 46% shorter treatment times were achieved. CONCLUSION: Although no clinically relevant differences in parameters where found, we identified some variation in the dose distributions of the different scenarios. Less complex scenarios generated visually more dose overlap; therefore, a more complex scenario may be preferred although differences in the quality metrics appear minor.


Assuntos
Neoplasias Encefálicas , Radiocirurgia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Neoplasias Encefálicas/secundário , Neoplasias Encefálicas/radioterapia , Humanos , Radiocirurgia/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Estudos Retrospectivos
2.
Int J Mol Sci ; 25(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38542294

RESUMO

An important hallmark of radiation dermatitis is the impairment of the mitotic ability of the stem/progenitor cells in the basal cell layers due to radiation-induced DNA damage, leading to suppressed cell renewal in the epidermis. However, this mechanism alone does not adequately explain the complex pathogenesis of radiation-induced skin injury. In this review, we summarize the latest findings on the complex pathogenesis of radiation dermatitis and correlate these with the clinical features of radiation-induced skin reactions. The current studies show that skin exposure to ionizing radiation induces cellular senescence in the epidermal keratinocytes. As part of their epithelial stress response, these senescent keratinocytes secrete pro-inflammatory mediators, thereby triggering skin inflammation. Keratinocyte-derived cytokines and chemokines modulate intercellular communication with the immune cells, activating skin-resident and recruiting skin-infiltrating immune cells within the epidermis and dermis, thereby orchestrating the inflammatory response to radiation-induced tissue damage. The increased expression of specific chemoattractant chemokines leads to increased recruitment of neutrophils into the irradiated skin, where they release cytotoxic granules that are responsible for the exacerbation of an inflammatory state. Moreover, the importance of IL-17-expressing γδ-T cells to the radiation-induced hyperproliferation of keratinocytes was demonstrated, leading to reactive hyperplasia of the epidermis. Radiation-induced, reactive hyperproliferation of the keratinocytes disturbs the fine-tuned keratinization and cornification processes, leading to structural dysfunction of the epidermal barrier. In summary, in response to ionizing radiation, epidermal keratinocytes have important structural and immunoregulatory barrier functions in the skin, coordinating interacting immune responses to eliminate radiation-induced damage and to initiate the healing process.


Assuntos
Dermatite , Radiodermite , Neoplasias Cutâneas , Humanos , Epiderme/metabolismo , Queratinócitos/metabolismo , Pele/patologia , Radiodermite/patologia , Dermatite/patologia , Neoplasias Cutâneas/patologia , Quimiocinas/metabolismo
3.
Chem Sci ; 15(24): 9104-9111, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38903236

RESUMO

N-Triflylphosphoramides (NTPAs) represent an important catalyst class in asymmetric catalysis due to their multiple hydrogen bond acceptor sites and acidity, which is increased by several orders of magnitude compared to conventional chiral phosphoric acids (CPAs). Thus, NTPAs allow for several challenging transformations, which are not accessible with CPAs. However, detailed evidence on their hydrogen bonding situation, complex structures and aggregation is still lacking. Therefore, this study covers the hydrogen bonding behavior and structural features of binary NTPA/imine complexes compared to their CPA counterparts. Deviating from the single-well potential hydrogen bonds commonly observed in CPA/imine complexes, the NTPA/imine complexes exhibit a tautomeric equilibrium between two proton positions. Low-temperature NMR at 180 K supported by computer simulations indicates a OHN hydrogen bond between the phosphoramide oxygen and the imine, instead of the mostly proposed NHN H-bond. Furthermore, this study finds no evidence for the existence of dimeric NTPA/NTPA/imine complexes as previously suggested for CPA systems, both synthetically and through NMR studies.

4.
Genes (Basel) ; 15(7)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39062630

RESUMO

Background: Cellular senescence in response to ionizing radiation (IR) limits the replication of damaged cells by causing permanent cell cycle arrest. However, IR can induce pro-survival signaling pathways that reduce the extent of radiation-induced cytotoxicity and promote the development of radioresistance. The differential incorporation of histone variant H2A.J has profound effects on higher-order chromatin organization and on establishing the epigenetic state of radiation-induced senescence. However, the precise epigenetic mechanism and function of H2A.J overexpression in response to IR exposure still needs to be elucidated. Methods: Primary (no target, NT) and genetically modified fibroblasts overexpressing H2A.J (H2A.J-OE) were exposed to 20 Gy and analyzed 2 weeks post-IR for radiation-induced senescence by immunohistochemistry and immunofluorescence microscopy. Transcriptome signatures were analyzed in (non-)irradiated NT and H2A.J-OE fibroblasts by RNA sequencing. Since H2A.J plays an important role in the epidermal homeostasis of human skin, the oncogenic potential of H2A.J was investigated in cutaneous squamous cell carcinoma (cSCC). The tissue microarrays of cSCC were analyzed for H2A.J protein expression pattern by automated image analysis. Results: In response to radiation-induced DNA damage, the overexpression of H2A.J impairs the formation of senescence-associated heterochromatin foci (SAHF), thereby inhibiting the SAHF-mediated silencing of proliferation-promoting genes. The dysregulated activation of cyclins and cyclin-dependent kinases disturbs cell cycle arrest in irradiated H2A.J-OE fibroblasts, thereby overcoming radiation-induced senescence. Comparative transcriptome analysis revealed significantly increased WNT16 signaling in H2A.J OE fibroblasts after IR exposure, promoting the fundamental mechanisms of tumor development and progression, including the activation of the epithelial-mesenchymal transition. The quantitative analysis of cSCCs revealed that undifferentiated tumors are associated with high nuclear H2A.J expression, related with greater oncogenic potential. Conclusion: H2A.J overexpression induces radioresistance and promotes oncogenic transformation through the activation of WNT16 signaling pathway functions. H2A.J-associated signatures may improve risk stratification by identifying patients with more aggressive cSCC who may require radiotherapy with increased doses.


Assuntos
Carcinoma de Células Escamosas , Transformação Celular Neoplásica , Senescência Celular , Fibroblastos , Histonas , Neoplasias Cutâneas , Humanos , Histonas/metabolismo , Histonas/genética , Fibroblastos/metabolismo , Fibroblastos/efeitos da radiação , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/metabolismo , Senescência Celular/genética , Senescência Celular/efeitos da radiação , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/efeitos da radiação , Tolerância a Radiação/genética , Radiação Ionizante , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Células Cultivadas , Epigênese Genética
5.
J Immunother Cancer ; 12(1)2024 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212124

RESUMO

BACKGROUND: Immunotherapies targeting immune checkpoints have gained increasing attention in cancer treatment, emphasizing the need for predictive biomarkers. Circular RNAs (circRNAs) have emerged as critical regulators of tumor immunity, particularly in the PD-1/PD-L1 pathway, and have shown potential in predicting immunotherapy efficacy. Yet, the detailed roles of circRNAs in cancer immunotherapy are not fully understood. While existing databases focus on either circRNA profiles or immunotherapy cohorts, there is currently no platform that enables the exploration of the intricate interplay between circRNAs and anti-tumor immunotherapy. A comprehensive resource combining circRNA profiles, immunotherapy responses, and clinical outcomes is essential to advance our understanding of circRNA-mediated tumor-immune interactions and to develop effective biomarkers. METHODS: To address these gaps, we constructed The Cancer CircRNA Immunome Atlas (TCCIA), the first database that combines circRNA profiles, immunotherapy response data, and clinical outcomes across multicancer types. The construction of TCCIA involved applying standardized preprocessing to the raw sequencing FASTQ files, characterizing circRNA profiles using an ensemble approach based on four established circRNA detection tools, analyzing tumor immunophenotypes, and compiling immunotherapy response data from diverse cohorts treated with immune checkpoint blockades (ICBs). RESULTS: TCCIA encompasses over 4,000 clinical samples obtained from 25 cohorts treated with ICBs along with other treatment modalities. The database provides researchers and clinicians with a cloud-based platform that enables interactive exploration of circRNA data in the context of ICB. The platform offers a range of analytical tools, including browse of identified circRNAs, visualization of circRNA abundance and correlation, association analysis between circRNAs and clinical variables, assessment of the tumor immune microenvironment, exploration of tumor molecular signatures, evaluation of treatment response or prognosis, and identification of altered circRNAs in immunotherapy-sensitive and resistant tumors. To illustrate the utility of TCCIA, we showcase two examples, including circTMTC3 and circMGA, by employing analysis of large-scale melanoma and bladder cancer cohorts, which unveil distinct impacts and clinical implications of different circRNA expression in cancer immunotherapy. CONCLUSIONS: TCCIA represents a significant advancement over existing resources, providing a comprehensive platform to investigate the role of circRNAs in immuno-oncology.


Assuntos
Melanoma , RNA Circular , Humanos , RNA Circular/genética , RNA/genética , RNA/metabolismo , Biomarcadores/análise , Imunoterapia , Microambiente Tumoral
6.
Neoplasia ; 49: 100953, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38232493

RESUMO

PURPOSE: Individual prediction of treatment response is crucial for personalized treatment in multimodal approaches against head-and-neck squamous cell carcinoma (HNSCC). So far, no reliable predictive parameters for treatment schemes containing immunotherapy have been identified. This study aims to predict treatment response to induction chemo-immunotherapy based on the peripheral blood immune status in patients with locally advanced HNSCC. METHODS: The peripheral blood immune phenotype was assessed in whole blood samples in patients treated in the phase II CheckRad-CD8 trial as part of the pre-planned translational research program. Blood samples were analyzed by multicolor flow cytometry before (T1) and after (T2) induction chemo-immunotherapy with cisplatin/docetaxel/durvalumab/tremelimumab. Machine Learning techniques were used to predict pathological complete response (pCR) after induction therapy. RESULTS: The tested classifier methods (LDA, SVM, LR, RF, DT, and XGBoost) allowed a distinct prediction of pCR. Highest accuracy was achieved with a low number of features represented as principal components. Immune parameters obtained from the absolute difference (lT2-T1l) allowed the best prediction of pCR. In general, less than 30 parameters and at most 10 principal components were needed for highly accurate predictions. Across several datasets, cells of the innate immune system such as polymorphonuclear cells, monocytes, and plasmacytoid dendritic cells are most prominent. CONCLUSIONS: Our analyses imply that alterations of the innate immune cell distribution in the peripheral blood following induction chemo-immuno-therapy is highly predictive for pCR in HNSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/terapia , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Quimioterapia de Indução/métodos , Imunofenotipagem , Imunoterapia , Linfócitos T CD8-Positivos , Imunidade Inata
7.
Cancers (Basel) ; 16(1)2023 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-38201525

RESUMO

Primary chemoradiotherapy (CRT) is an established treatment option for locally advanced head and neck squamous cell carcinomas (HNSCC) usually combining intensity modified radiotherapy with concurrent platinum-based chemotherapy. Though the majority of patients can be cured with this regimen, treatment response is highly heterogeneous and can hardly be predicted. SEC62 represents a metastasis stimulating oncogene that is frequently overexpressed in various cancer entities and is associated with poor outcome. Its role in HNSCC patients undergoing CRT has not been investigated so far. A total of 127 HNSCC patients treated with primary CRT were included in this study. The median follow-up was 5.4 years. Pretherapeutic tissue samples of the primary tumors were used for immunohistochemistry targeting SEC62. SEC62 expression, clinical and histopathological parameters, as well as patient outcome, were correlated in univariate and multivariate survival analyses. High SEC62 expression correlated with a significantly shorter overall survival (p = 0.015) and advanced lymph node metastases (p = 0.024). Further significant predictors of poor overall and progression-free survival included response to therapy (RECIST1.1), nodal status, distant metastases, tobacco consumption, recurrence of disease, and UICC stage. In a multivariate Cox hazard proportional regression analysis, only SEC62 expression (p = 0.046) and response to therapy (p < 0.0001) maintained statistical significance as independent predictors of the patients' overall survival. This study identified SEC62 as an independent prognostic biomarker in HNSCC patients treated with primary CRT. The role of SEC62 as a potential therapeutic target and its interaction with radiation-induced molecular alterations in head and neck cancer cells should further be investigated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA