Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 251
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(14): e2024357119, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35353621

RESUMO

Prostate epithelial cells have the unique capacity to secrete large amounts of citrate, but the carbon sources and metabolic pathways that maintain this production are not well known. We mapped potential pathways for citrate carbons in the human prostate cancer metastasis cell lines LNCaP and VCaP, for which we first established that they secrete citrate (For LNCaP 5.6 ± 0.9 nmol/h per 106 cells). Using 13C-labeled substrates, we traced the incorporation of 13C into citrate by NMR of extracellular fluid. Our results provide direct evidence that glucose is a main carbon source for secreted citrate. We also demonstrate that carbons from supplied glutamine flow via oxidative Krebs cycle and reductive carboxylation routes to positions in secreted citrate but likely do not contribute to its net synthesis. The potential anaplerotic carbon sources aspartate and asparagine did not contribute to citrate carbons. We developed a quantitative metabolic model employing the 13C distribution in extracellular citrate after 13C glucose and pyruvate application to assess intracellular pathways of carbons for secreted citrate. From this model, it was estimated that in LNCaP about 21% of pyruvate entering the Krebs cycle is converted via pyruvate carboxylase as an anaplerotic route at a rate more than sufficient to compensate carbon loss of this cycle by citrate secretion. This model provides an estimation of the fraction of molecules, including citrate, leaving the Krebs cycle at every turn. The measured ratios of 13C atoms at different positions in extracellular citrate may serve as biomarkers for (malignant) epithelial cell metabolism.


Assuntos
Biomarcadores Tumorais , Ácido Cítrico , Neoplasias da Próstata , Biomarcadores Tumorais/metabolismo , Carbono/metabolismo , Isótopos de Carbono , Citratos , Ácido Cítrico/metabolismo , Ciclo do Ácido Cítrico , Glucose/metabolismo , Humanos , Espectroscopia de Ressonância Magnética , Masculino , Neoplasias da Próstata/metabolismo
2.
Magn Reson Med ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775024

RESUMO

PURPOSE: Prostate tissue has a complex microstructure, mainly composed of epithelial and stromal cells, and of extracellular (acinar-luminal) spaces. Diffusion-weighted MR spectroscopy (DW-MRS) is ideally suited to explore complex microstructure in vivo with metabolites selectively distributed in different subspaces. To date, this technique has been applied to brain and muscle. This study presents the development and pioneering utilization of 1H-DW-MRS in the prostate, accompanied by in vitro studies to support interpretations of in vivo findings. METHODS: Nine healthy volunteers underwent a prostate MR examination (mean age, 56 years; range, 31-66). Metabolic complexation was studied in vitro using solutions with major compounds found in prostatic fluid of the lumen. DW-MRS was performed at 3 T with a non-water-suppressed single-voxel sequence with metabolite-cycling to concurrently measure metabolite and water signals. The water signal was used in postprocessing as a reference in a motion-compensation scheme. The spectra were fitted simultaneously in the spectral and diffusion-weighting dimensions. Apparent diffusion coefficients (ADCs) were derived by fitting signal decays that were assumed to be mono-exponential for metabolites and biexponential for water. RESULTS: DW-MRS of the prostate revealed relatively low ADCs for Cho and Cr compounds, aligning with their intracellular location and higher ADCs for citrate and spermine supporting their luminal origin. In vitro assessments of the ADCs of citrate and spermine demonstrated their complex formation and protein binding. Tissue concentrations of MRS-detectable metabolites were as expected for the voxel location. CONCLUSIONS: This work successfully demonstrates the feasibility of 1H-DW-MRS of the prostate and its potential for providing valuable microstructural information.

3.
NMR Biomed ; 37(3): e5062, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37920145

RESUMO

In this study, we investigated the potential of the multivariate curve resolution alternating least squares (MCR-ALS) algorithm for analyzing three-dimensional (3D) 1 H-MRSI data of the prostate in prostate cancer (PCa) patients. MCR-ALS generates relative intensities of components representing spectral profiles derived from a large training set of patients, providing an interpretable model. Our objectives were to classify magnetic resonance (MR) spectra, differentiating tumor lesions from benign tissue, and to assess PCa aggressiveness. We included multicenter 3D 1 H-MRSI data from 106 PCa patients across eight centers. The patient cohort was divided into a training set (N = 63) and an independent test set (N = 43). Singular value decomposition determined that MR spectra were optimally represented by five components. The profiles of these components were extracted from the training set by MCR-ALS and assigned to specific tissue types. Using these components, MCR-ALS was applied to the test set for a quantitative analysis to discriminate tumor lesions from benign tissue and to assess tumor aggressiveness. Relative intensity maps of the components were reconstructed and compared with histopathology reports. The quantitative analysis demonstrated a significant separation between tumor and benign voxels (t-test, p < 0.001). This result was achieved including voxels with low-quality MR spectra. A receiver operating characteristic analysis of the relative intensity of the tumor component revealed that low- and high-risk tumor lesions could be distinguished with an area under the curve of 0.88. Maps of this component properly identified the extent of tumor lesions. Our study demonstrated that MCR-ALS analysis of 1 H-MRSI of the prostate can reliably identify tumor lesions and assess their aggressiveness. It handled multicenter data with minimal preprocessing and without using prior knowledge or quality control. These findings indicate that MCR-ALS can serve as an automated tool to assess the presence, extent, and aggressiveness of tumor lesions in the prostate, enhancing diagnostic capabilities and treatment planning of PCa patients.


Assuntos
Próstata , Neoplasias da Próstata , Masculino , Humanos , Próstata/diagnóstico por imagem , Próstata/patologia , Prótons , Neoplasias da Próstata/diagnóstico por imagem , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética/métodos , Análise dos Mínimos Quadrados
4.
Toxicol Mech Methods ; 34(3): 283-299, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37946400

RESUMO

Disruption of the immune system during embryonic brain development by environmental chemicals was proposed as a possible cause of neurodevelopmental disorders. We previously found adverse effects of di-n-octyltin dichloride (DOTC) on maternal and developing immune systems of rats in an extended one-generation reproductive toxicity study according to the OECD 443 test guideline. We hypothesize that the DOTC-induced changes in the immune system can affect neurodevelopment. Therefore, we used in-vivo MRI and PET imaging and genomics, in addition to behavioral testing and neuropathology as proposed in OECD test guideline 443, to investigate the effect of DOTC on structural and functional brain development. Male rats were exposed to DOTC (0, 3, 10, or 30 mg/kg of diet) from 2 weeks prior to mating of the F0-generation until sacrifice of F1-animals. The brains of rats, exposed to DOTC showed a transiently enlarged volume of specific brain regions (MRI), altered specific gravity, and transient hyper-metabolism ([18F]FDG PET). The alterations in brain development concurred with hyper-responsiveness in auditory startle response and slight hyperactivity in young adult animals. Genomics identified altered transcription of key regulators involved in neurodevelopment and neural function (e.g. Nrgrn, Shank3, Igf1r, Cck, Apba2, Foxp2); and regulators involved in cell size, cell proliferation, and organ development, especially immune system development and functioning (e.g. LOC679869, Itga11, Arhgap5, Cd47, Dlg1, Gas6, Cml5, Mef2c). The results suggest the involvement of immunotoxicity in the impairment of the nervous system by DOTC and support the hypothesis of a close connection between the immune and nervous systems in brain development.


Assuntos
Desoxicitidina/análogos & derivados , Compostos Orgânicos de Estanho , Tionucleosídeos , Gravidez , Feminino , Ratos , Masculino , Animais , Compostos Orgânicos de Estanho/toxicidade , Encéfalo , Proteínas de Transporte , Proteínas do Tecido Nervoso , Caderinas
5.
Magn Reson Med ; 89(5): 1741-1753, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36572967

RESUMO

PURPOSE: To develop a robust processing procedure of raw signals from water-unsuppressed MRSI of the prostate for the mapping of absolute tissue concentrations of metabolites. METHODS: Water-unsuppressed 3D MRSI data were acquired from a phantom, from healthy volunteers, and a patient with prostate cancer. Signal processing included sequential computation of the modulus of the FID to remove water sidebands, a Hilbert transformation, and k-space Hamming filtering. For the removal of the water signal, we compared Löwner tensor-based blind source separation (BSS) and Hankel Lanczos singular value decomposition techniques. Absolute metabolite levels were quantified with LCModel and the results were statistically analyzed to compare the water removal methods and conventional water-suppressed MRSI. RESULTS: The post-processing algorithms successfully removed the water signal and its sidebands without affecting metabolite signals. The best water removal performance was achieved by Löwner tensor-based BSS. Absolute tissue concentrations of citrate in the peripheral zone derived from water-suppressed and unsuppressed 1 H MRSI were the same and as expected from the known physiology of the healthy prostate. Maps for citrate and choline from water-unsuppressed 3D 1 H-MRSI of the prostate showed expected spatial variations in metabolite levels. CONCLUSION: We developed a robust relatively simple post-processing method of water-unsuppressed MRSI of the prostate to remove the water signal. Absolute quantification using the water signal, originating from the same location as the metabolite signals, avoids the acquisition of additional reference data.


Assuntos
Próstata , Água , Masculino , Humanos , Próstata/diagnóstico por imagem , Água/química , Espectroscopia de Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/métodos , Citratos/metabolismo , Ácido Cítrico/metabolismo , Algoritmos , Encéfalo/metabolismo
6.
Magn Reson Med ; 87(2): 561-573, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34554604

RESUMO

PURPOSE: Until now, 1 H MRSI of the prostate has been performed with suppression of the large water signal to avoid distortions of metabolite signals. However, this signal can be used for absolute quantification and spectral corrections. We investigated the feasibility of water-unsuppressed MRSI in patients with prostate cancer for water signal-mediated spectral quality improvement and determination of absolute tissue levels of choline. METHODS: Eight prostate cancer patients scheduled for radical prostatectomy underwent multi-parametric MRI at 3 T, including 3D water-unsuppressed semi-LASER MRSI. A postprocessing algorithm was developed to remove the water signal and its artifacts and use the extracted water signal as intravoxel reference for phase and frequency correction of metabolite signals and for absolute metabolite quantification. RESULTS: Water-unsuppressed MRSI with dedicated postprocessing produced water signal and artifact-free MR spectra throughout the prostate. In all patients, the absolute choline tissue concentration was significantly higher in tumorous than in benign tissue areas (mean ± SD: 7.2 ± 1.4 vs 3.8 ± 0.7 mM), facilitating tumor localization by choline mapping. Tumor tissue levels of choline correlated better with the commonly used (choline + spermine + creatine)/citrate ratio (r = 0.78 ± 0.1) than that of citrate (r = 0.21 ± 0.06). The highest maximum choline concentrations occurred in high-risk cancer foci. CONCLUSION: This report presents the first successful water-unsuppressed MRSI of the whole prostate. The water signal enabled amelioration of spectral quality and absolute metabolite quantification. In this way, choline tissue levels were identified as tumor biomarker. Choline mapping may serve as a tool in prostate cancer localization and risk scoring in multi-parametric MRI for diagnosis and biopsy procedures.


Assuntos
Colina , Neoplasias da Próstata , Humanos , Espectroscopia de Ressonância Magnética , Masculino , Próstata/diagnóstico por imagem , Neoplasias da Próstata/diagnóstico por imagem , Água
7.
MAGMA ; 35(4): 645-665, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35445307

RESUMO

In this paper, we review the developments of 1H-MR spectroscopic imaging (MRSI) methods designed to investigate prostate cancer, covering key aspects such as specific hardware, dedicated pulse sequences for data acquisition and data processing and quantification techniques. Emphasis is given to recent advancements in MRSI methodologies, as well as future developments, which can lead to overcome difficulties associated with commonly employed MRSI approaches applied in clinical routine. This includes the replacement of standard PRESS sequences for volume selection, which we identified as inadequate for clinical applications, by sLASER sequences and implementation of 1H MRSI without water signal suppression. These may enable a new evaluation of the complementary role and significance of MRSI in prostate cancer management.


Assuntos
Neoplasias da Próstata , Prótons , Humanos , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Masculino , Neoplasias da Próstata/diagnóstico por imagem , Espectroscopia de Prótons por Ressonância Magnética/métodos
8.
MAGMA ; 35(4): 683-694, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34919194

RESUMO

INTRODUCTION: Molecular interactions in prostatic fluid are of biological interest and may affect MRI and MRS of the prostate. We investigated the existence of interactions between the major components of this fluid: spermine, citrate and myoinositol, metal ions, including zinc, and proteins. MATERIALS AND METHODS: Solutions of 90 mM citrate, 18 mM spermine and 6 mM myo-inositol, mimicking expressed prostatic fluid, were investigated by 1H NMR using changes in T2 relaxation and chemical shift as markers for interactions. RESULTS AND DISCUSSION: Adding to this metabolite mixture the ions Na+ , K+, Ca++, Mg++ and Zn++, decreased the T2 relaxation times of citrate and spermine protons by factors of 3 and 2, respectively, with Zn++ causing the largest effect, indicating ion-metabolite interactions. The T2 of 18 mM spermine dropped by a factor of 2 upon addition with 90 mM citrate, but no effect on T2 was seen with myo-inositol pointing to a specific citrate-spermine interaction. Moreover, the T2 of citrate in the presence of spermine decreased by adding metal ions and increasing amounts of Zn++, indicating complexation of citrate and spermine with metal ions, particularly with Zn. The addition of bovine serum albumin (BSA), as an index protein, substantially further decreased the T2 of spermine and citrate implying the formation of a transient spermine-metal ion-citrate-BSA complex. Finally, we found that the T2 of citrate in extracellular fluid of prostate cancer cells, as a mimic of fluid in cancerous prostates, decreased by adding fetal calf serum, indicating protein binding.


Assuntos
Neoplasias da Próstata , Prótons , Citratos , Ácido Cítrico/metabolismo , Humanos , Inositol/metabolismo , Imageamento por Ressonância Magnética/métodos , Masculino , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/metabolismo , Espectroscopia de Prótons por Ressonância Magnética/métodos , Espermina
9.
J Physiol ; 599(5): 1533-1550, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33369737

RESUMO

KEY POINTS: The post-exercise recovery of phosphocreatine, a measure of the oxidative capacity of muscles, as assessed by 31 P MR spectroscopy, shows a striking increase from distal to proximal along the human tibialis anterior muscle. To investigate why this muscle exhibits a greater oxidative capacity proximally, we tested whether the spatial variation in phosphocreatine recovery rate is related to oxygen supply, muscle fibre type or type of exercise. We revealed that oxygen supply also increases from distal to proximal along the tibialis anterior, and that it strongly correlated with phosphocreatine recovery. Carnosine level, a surrogate measure for muscle fibre type was not different between proximal and distal, and type of exercise did not affect the gradient in phosphocreatine recovery rate. Taken together, the findings of this study suggest that the post-exercise spatial gradients in oxygen supply and phosphocreatine recovery are driven by a higher intrinsic mitochondrial oxidative capacity proximally. ABSTRACT: Phosphorus magnetic resonance spectroscopy (31 P MRS) of human tibialis anterior (TA) revealed a strong proximo-distal gradient in the post-exercise phosphocreatine (PCr) recovery rate constant (kPCr ), a measure of muscle oxidative capacity. The aim of this study was to investigate whether this kPCr gradient is related to O2 supply, resting phosphorylation potential, muscle fibre type, or type of exercise. Fifteen male volunteers performed continuous isometric ankle dorsiflexion at 30% maximum force until exhaustion. At multiple locations along the TA, we measured the oxidative PCr resynthesis rate (VPCr = kPCr × PCr depletion) by 31 P MRS, the oxyhaemoglobin recovery rate constant (kO2Hb ) by near infrared spectroscopy, and muscle perfusion with MR intravoxel incoherent motion imaging. The kO2Hb , kPCr , VPCr and muscle perfusion depended on measurement location (P < 0.001, P < 0.001, P = 0.032 and P = 0.003, respectively), all being greater proximally. The kO2Hb and muscle perfusion correlated with kPCr (r = 0.956 and r = 0.852, respectively) and VPCr (r = 0.932 and r = 0.985, respectively), the latter reflecting metabolic O2 consumption. Resting phosphorylation potential (PCr/inorganic phosphate) was also higher proximally (P < 0.001). The surrogate for fibre type, carnosine content measured by 1 H MRS, did not differ between distal and proximal TA (P = 0.884). Performing intermittent exercise to avoid exercise ischaemia, still led to larger kPCr proximally than distally (P = 0.013). In conclusion, the spatial kPCr gradient is strongly associated with the spatial variation in O2 supply. It cannot be explained by exercise-induced ischaemia nor by fibre type. Our findings suggest it is driven by a higher proximal intrinsic mitochondrial oxidative capacity, apparently to support contractile performance of the TA.


Assuntos
Exercício Físico , Músculo Esquelético , Trifosfato de Adenosina , Humanos , Masculino , Contração Muscular , Fosfocreatina
10.
NMR Biomed ; 34(5): e4169, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-31518036

RESUMO

31 P MR spectroscopic imaging (MRSI) is a versatile technique to study phospholipid precursors and energy metabolism in the healthy and diseased human brain. However, mainly due to its low sensitivity, 31 P MRSI is currently limited to research purposes. To obtain 3D 31 P MRSI spectra with improved signal-to-noise ratio on clinical 3 T MR systems, we used a coil combination consisting of a dual-tuned birdcage transmit coil and a 31 P eight-channel phased-array receive insert. To further increase resolution and sensitivity we applied WALTZ4 1 H decoupling and continuous wave nuclear Overhauser effect (NOE) enhancement and acquired high-quality MRSI spectra with nominal voxel volumes of ~ 17.6 cm3 (effective voxel volume ~ 51 cm3 ) in a clinically relevant measurement time of ~ 13 minutes, without exceeding SAR limits. Steady-state NOE enhancements ranged from 15 ± 9% (γ-ATP) and 33 ± 3% (phosphocreatine) to 48 ± 11% (phosphoethanolamine). Because of these improvements, we resolved and detected all 31 P signals of metabolites that have also been reported for ultrahigh field strengths, including resonances for NAD+ , NADH and extracellular inorganic phosphate. T1 times of extracellular inorganic phosphate were longer than for intracellular inorganic phosphate (3.8 ± 1.4s vs 1.8 ± 0.65 seconds). A comparison of measured T1 relaxation times and NOE enhancements at 3 T with published values between 1.5 and 9.4 T indicates that T1 relaxation of 31 P metabolite spins in the human brain is dominated by dipolar relaxation for this field strength range. Even although intrinsic sensitivity is higher at ultrahigh fields, we demonstrate that at a clinical field strength of 3 T, similar 31 P MRSI information content can be obtained using a sophisticated coil design combined with 1 H decoupling and NOE enhancement.


Assuntos
Encéfalo/diagnóstico por imagem , Espectroscopia de Ressonância Magnética , NAD/metabolismo , Trifosfato de Adenosina/metabolismo , Adulto , Feminino , Humanos , Masculino , Metaboloma , Fosfatos/análise , Fosfocreatina/análogos & derivados , Fosfocreatina/metabolismo , Fósforo , Espectroscopia de Prótons por Ressonância Magnética , Processamento de Sinais Assistido por Computador , Fatores de Tempo
11.
J Biomed Sci ; 28(1): 54, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34281540

RESUMO

BACKGROUND: Current multiparametric MRI (mp-MRI) in routine clinical practice has poor-to-moderate diagnostic performance for transition zone prostate cancer. The aim of this study was to evaluate the potential diagnostic performance of novel 1H magnetic resonance spectroscopic imaging (MRSI) using a semi-localized adiabatic selective refocusing (sLASER) sequence with gradient offset independent adiabaticity (GOIA) pulses in addition to the routine mp-MRI, including T2-weighted imaging (T2WI), diffusion-weighted imaging (DWI) and quantitative dynamic contrast enhancement (DCE) for transition zone prostate cancer detection, localization and grading. METHODS: Forty-one transition zone prostate cancer patients underwent mp-MRI with an external phased-array coil. Normal and cancer regions were delineated by two radiologists and divided into low-risk, intermediate-risk, and high-risk categories based on TRUS guided biopsy results. Support vector machine models were built using different clinically applicable combinations of T2WI, DWI, DCE, and MRSI. The diagnostic performance of each model in cancer detection was evaluated using the area under curve (AUC) of the receiver operating characteristic diagram. Then accuracy, sensitivity and specificity of each model were calculated. Furthermore, the correlation of mp-MRI parameters with low-risk, intermediate-risk and high-risk cancers were calculated using the Spearman correlation coefficient. RESULTS: The addition of MRSI to T2WI + DWI and T2WI + DWI + DCE improved the accuracy, sensitivity and specificity for cancer detection. The best performance was achieved with T2WI + DWI + MRSI where the addition of MRSI improved the AUC, accuracy, sensitivity and specificity from 0.86 to 0.99, 0.83 to 0.96, 0.80 to 0.95, and 0.85 to 0.97 respectively. The (choline + spermine + creatine)/citrate ratio of MRSI showed the highest correlation with cancer risk groups (r = 0.64, p < 0.01). CONCLUSION: The inclusion of GOIA-sLASER MRSI into conventional mp-MRI significantly improves the diagnostic accuracy of the detection and aggressiveness assessment of transition zone prostate cancer.


Assuntos
Espectroscopia de Ressonância Magnética/uso terapêutico , Imageamento por Ressonância Magnética Multiparamétrica/estatística & dados numéricos , Neoplasias da Próstata/diagnóstico , Idoso , Idoso de 80 Anos ou mais , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias da Próstata/diagnóstico por imagem
12.
Muscle Nerve ; 63(1): 60-67, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32959362

RESUMO

BACKGROUND: Specific force, that is the amount of force generated per unit of muscle tissue, is reduced in patients with facioscapulohumeral muscular dystrophy (FSHD). The causes of reduced specific force and its relation with FSHD disease severity are unknown. METHODS: Quantitative muscle magnetic resonance imaging (MRI), measurement of voluntary maximum force generation and quadriceps force-frequency relationship, and vastus lateralis muscle biopsies were performed in 12 genetically confirmed patients with FSHD and 12 controls. RESULTS: Specific force was reduced by ~33% in all FSHD patients independent of disease severity. Quadriceps force-frequency relationship shifted to the right in severe FSHD compared to controls. Fiber type distribution in vastus lateralis muscle biopsies did not differ between groups. CONCLUSIONS: Reduced quadriceps specific force is present in all FSHD patients regardless of disease severity or fatty infiltration. Early myopathic changes, including fibrosis, and non-muscle factors, such as physical fatigue and musculoskeletal pain, may contribute to reduced specific force.


Assuntos
Músculo Esquelético/patologia , Distrofia Muscular Facioescapuloumeral/patologia , Distrofia Muscular Facioescapuloumeral/fisiopatologia , Músculo Quadríceps/patologia , Índice de Gravidade de Doença , Adulto , Feminino , Fibrose/complicações , Fibrose/fisiopatologia , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/fisiopatologia , Distrofia Muscular Facioescapuloumeral/complicações , Dor Musculoesquelética/complicações , Dor Musculoesquelética/fisiopatologia , Músculo Quadríceps/fisiopatologia , Adulto Jovem
13.
Radiology ; 297(1): 132-142, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32808888

RESUMO

Background Patients with myotonic dystrophy type 1 (DM1) increased their physical activity and exercise capacity following a behavioral intervention. However, it is unknown what is altered in muscles of patients with DM1 as a result of this intervention. The increased exercise capacity suggests that decelerated fat infiltration or increased muscle cross-sectional area (CSA) could be involved. Purpose To assess the effect of this activity-stimulating behavioral intervention on the lower extremity muscles of patients with DM1 with longitudinal quantitative muscle MRI. Materials and Methods In this prospective trial, participants with DM1 were randomized to a behavioral intervention (n = 14) or continued regular care (standard care; n = 13); no age-matched pairing was performed. Participants underwent MRI of the lower extremities at baseline and 10-month follow-up (January 2015 to March 2016). Fat fraction (FF), muscle CSA, and muscle water T2 (T2water) as markers for fat infiltration, muscle mass, and alteration in tissue water distribution (edema), respectively, were assessed with a chemical shift-encoded Dixon sequence and multiecho spin-echo sequence. Longitudinal within-group and between-group changes were assessed with paired-samples t tests and multivariable regression models. Results A total of 27 patients with DM1 (15 men) were evaluated. Patient age was comparable between groups (intervention, 45 years ± 13 [standard deviation]; standard care, 5 years ± 12; P = .96). Muscle CSA increased 5.9 cm2 ± 7.8 in the intervention group during the 10-month follow-up (P = .03) and decreased 3.6 cm2 ± 7.2 in the standard care group (P = .13). After 10 months, the mean difference between the groups was 9.5 cm2 (P = .01). This effect was stronger in muscles with baseline FF below the mean ± standard deviation of unaffected volunteers (-0.4 cm2 ± 0.15; P < .001). FF increased 0.9% ± 1.0 in the intervention group (P = .02) and 1.2% ± 1.2 for standard care (P = .02), with no between-group difference (P = .56). T2water did not change significantly in either group (intervention, P = .08; standard care, P = .88). Conclusion A behavioral intervention targeting physical activity increased lower extremity muscle cross-sectional area in patients with myotonic dystrophy, preferentially in healthy-appearing muscle. © RSNA, 2020 Online supplemental material is available for this article.


Assuntos
Tecido Adiposo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Distrofia Miotônica/diagnóstico por imagem , Distrofia Miotônica/reabilitação , Sarcopenia/diagnóstico por imagem , Feminino , Humanos , Extremidade Inferior , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos
14.
Magn Reson Med ; 83(5): 1825-1836, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31677312

RESUMO

PURPOSE: To propose a novel segmentation framework that is dedicated to the follow-up of fat infiltration in individual muscles of patients with neuromuscular disorders. METHODS: We designed a semi-automatic segmentation pipeline of individual leg muscles in MR images based on automatic propagation through nonlinear registrations of initial delineation in a minimal number of MR slices. This approach has been validated for the segmentation of individual muscles from MRI data sets, acquired over a 10-month period, from thighs and legs in 10 patients with muscular dystrophy. The robustness of the framework was evaluated using conventional metrics related to muscle volume and clinical metrics related to fat infiltration. RESULTS: High accuracy of the semi-automatic segmentation (mean Dice similarity coefficient higher than 0.89) was reported. The provided method has excellent reliability regarding the reproducibility of the fat fraction estimation, with an average intraclass correlation coefficient score of 0.99. Furthermore, the present segmentation framework was determined to be more reliable than the intra-expert performance, which had an average intraclass correlation coefficient of 0.93. CONCLUSION: The proposed framework of segmentation can successfully provide an effective and reliable tool for accurate follow-up of any MRI biomarkers in neuromuscular disorders. This method could assist the quantitative assessment of muscular changes occurring in such diseases.


Assuntos
Imageamento por Ressonância Magnética , Coxa da Perna , Algoritmos , Seguimentos , Humanos , Perna (Membro) , Reprodutibilidade dos Testes
15.
NMR Biomed ; 33(10): e4362, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32662543

RESUMO

Reprogramming of energy metabolism in the development of prostate cancer can be exploited for a better diagnosis and treatment of the disease. The goal of this study was to determine whether differences in glucose and pyruvate metabolism of human prostate cancer cells with dissimilar aggressivenesses can be detected using hyperpolarized [1-13 C]pyruvate MRS and [18 F]FDG-PET imaging, and to evaluate whether these measures correlate. For this purpose, we compared murine xenografts of human prostate cancer LNCaP cells with those of more aggressive PC3 cells. [1-13 C]pyruvate was hyperpolarized by dissolution dynamic nuclear polarization (dDNP) and [1-13 C]pyruvate to lactate conversion was followed by 13 C MRS. Subsequently [18 F]FDG uptake was investigated by static and dynamic PET measurements. Standard uptake values (SUVs) for [18 F]FDG were significantly higher for xenografts of PC3 compared with those of LNCaP. However, we did not observe a difference in the average apparent rate constant kpl of 13 C label exchange from pyruvate to lactate between the tumor variants. A significant negative correlation was found between SUVs from [18 F]FDG PET measurements and kpl values for the xenografts of both tumor types. The kpl rate constant may be influenced by various factors, and studies with a range of prostate cancer cells in suspension suggest that LDH inhibition by pyruvate may be one of these. Our results indicate that glucose and pyruvate metabolism in the prostate cancer cell models differs from that in other tumor models and that [18 F]FDG-PET can serve as a valuable complementary tool in dDNP studies of aggressive prostate cancer with [1-13 C]pyruvate.


Assuntos
Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Fluordesoxiglucose F18/química , Glucose/metabolismo , Lactatos/metabolismo , Tomografia por Emissão de Pósitrons , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/metabolismo , Ácido Pirúvico/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Linhagem Celular Tumoral , Metabolismo Energético , Humanos , Cinética , Masculino , Camundongos Endogâmicos BALB C , Distribuição Tecidual
16.
NMR Biomed ; : e4347, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32808407

RESUMO

With a 40-year history of use for in vivo studies, the terminology used to describe the methodology and results of magnetic resonance spectroscopy (MRS) has grown substantially and is not consistent in many aspects. Given the platform offered by this special issue on advanced MRS methodology, the authors decided to describe many of the implicated terms, to pinpoint differences in their meanings and to suggest specific uses or definitions. This work covers terms used to describe all aspects of MRS, starting from the description of the MR signal and its theoretical basis to acquisition methods, processing and to quantification procedures, as well as terms involved in describing results, for example, those used with regard to aspects of quality, reproducibility or indications of error. The descriptions of the meanings of such terms emerge from the descriptions of the basic concepts involved in MRS methods and examinations. This paper also includes specific suggestions for future use of terms where multiple conventions have emerged or coexisted in the past.

17.
NMR Biomed ; : e4246, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-32037688

RESUMO

Skeletal muscle phosphorus-31 31 P MRS is the oldest MRS methodology to be applied to in vivo metabolic research. The technical requirements of 31 P MRS in skeletal muscle depend on the research question, and to assess those questions requires understanding both the relevant muscle physiology, and how 31 P MRS methods can probe it. Here we consider basic signal-acquisition parameters related to radio frequency excitation, TR, TE, spectral resolution, shim and localisation. We make specific recommendations for studies of resting and exercising muscle, including magnetisation transfer, and for data processing. We summarise the metabolic information that can be quantitatively assessed with 31 P MRS, either measured directly or derived by calculations that depend on particular metabolic models, and we give advice on potential problems of interpretation. We give expected values and tolerable ranges for some measured quantities, and minimum requirements for reporting acquisition parameters and experimental results in publications. Reliable examination depends on a reproducible setup, standardised preconditioning of the subject, and careful control of potential difficulties, and we summarise some important considerations and potential confounders. Our recommendations include the quantification and standardisation of contraction intensity, and how best to account for heterogeneous muscle recruitment. We highlight some pitfalls in the assessment of mitochondrial function by analysis of phosphocreatine (PCr) recovery kinetics. Finally, we outline how complementary techniques (near-infrared spectroscopy, arterial spin labelling, BOLD and various other MRI and 1 H MRS measurements) can help in the physiological/metabolic interpretation of 31 P MRS studies by providing information about blood flow and oxygen delivery/utilisation. Our recommendations will assist in achieving the fullest possible reliable picture of muscle physiology and pathophysiology.

18.
FASEB J ; 33(1): 557-571, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30001166

RESUMO

Diffuse gliomas often carry point mutations in isocitrate dehydrogenase ( IDH1mut), resulting in metabolic stress. Although IDHmut gliomas are difficult to culture in vitro, they thrive in the brain via diffuse infiltration, suggesting brain-specific tumor-stroma interactions that can compensate for IDH-1 deficits. To elucidate the metabolic adjustments in clinical IDHmut gliomas that contribute to their malignancy, we applied a recently developed method of targeted quantitative RNA next-generation sequencing to 66 clinical gliomas and relevant orthotopic glioma xenografts, with and without the endogenous IDH-1R132H mutation. Datasets were analyzed in R using Manhattan plots to calculate distance between expression profiles, Ward's method to perform unsupervised agglomerative clustering, and the Mann Whitney U test and Fisher's exact tests for supervised group analyses. The significance of transcriptome data was investigated by protein analysis, in situ enzymatic activity mapping, and in vivo magnetic resonance spectroscopy of orthotopic IDH1mut- and IDHwt-glioma xenografts. Gene set enrichment analyses of clinical IDH1mut gliomas strongly suggest a role for catabolism of lactate and the neurotransmitter glutamate, whereas, in IDHwt gliomas, processing of glucose and glutamine are the predominant metabolic pathways. Further evidence of the differential metabolic activity in these cancers comes from in situ enzymatic mapping studies and preclinical in vivo magnetic resonance spectroscopy imaging. Our data support an evolutionary model in which IDHmut glioma cells exist in symbiosis with supportive neuronal cells and astrocytes as suppliers of glutamate and lactate, possibly explaining the diffuse nature of these cancers. The dependency on glutamate and lactate opens the way for novel approaches in the treatment of IDHmut gliomas.-Lenting, K., Khurshed, M., Peeters, T. H., van den Heuvel, C. N. A. M., van Lith, S. A. M., de Bitter, T., Hendriks, W., Span, P. N., Molenaar, R. J., Botman, D., Verrijp, K., Heerschap, A., ter Laan, M., Kusters, B., van Ewijk, A., Huynen, M. A., van Noorden, C. J. F., Leenders, W. P. J. Isocitrate dehydrogenase 1-mutated human gliomas depend on lactate and glutamate to alleviate metabolic stress.


Assuntos
Neoplasias Encefálicas/patologia , Glioma/patologia , Ácido Glutâmico/metabolismo , Isocitrato Desidrogenase/genética , Ácido Láctico/metabolismo , Mutação , Estresse Fisiológico , 4-Aminobutirato Transaminase/genética , 4-Aminobutirato Transaminase/metabolismo , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Glioma/metabolismo , Glutamato Desidrogenase/genética , Glutamato Desidrogenase/metabolismo , Glutaminase/genética , Glutaminase/metabolismo , Humanos , Isocitrato Desidrogenase/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica , Succinato-Semialdeído Desidrogenase/genética , Succinato-Semialdeído Desidrogenase/metabolismo , Transcriptoma , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Diabetologia ; 62(6): 1065-1073, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31001674

RESUMO

AIMS/HYPOTHESIS: Chronic hyperglycaemia in type 1 diabetes affects the structure and functioning of the brain, but the impact of recurrent hypoglycaemia is unclear. Changes in the neurochemical profile have been linked to loss of neuronal function. We therefore aimed to investigate the impact of type 1 diabetes and burden of hypoglycaemia on brain metabolite levels, in which we assumed the burden to be high in individuals with impaired awareness of hypoglycaemia (IAH) and low in those with normal awareness of hypoglycaemia (NAH). METHODS: We investigated 13 non-diabetic control participants, 18 individuals with type 1 diabetes and NAH and 13 individuals with type 1 diabetes and IAH. Brain metabolite levels were determined by analysing previously obtained 1H magnetic resonance spectroscopy data, measured under hyperinsulinaemic-euglycaemic conditions. RESULTS: Brain glutamate levels were higher in participants with diabetes, both with NAH (+15%, p = 0.013) and with IAH (+19%, p = 0.003), compared with control participants. Cerebral glutamate levels correlated with HbA1c levels (r = 0.40; p = 0.03) and correlated inversely (r = -0.36; p = 0.04) with the age at diagnosis of diabetes. Other metabolite levels did not differ between groups, apart from an increase in aspartate in IAH. CONCLUSIONS/INTERPRETATION: In conclusion, brain glutamate levels are elevated in people with type 1 diabetes and correlate with glycaemic control and age of disease diagnosis, but not with burden of hypoglycaemia as reflected by IAH. This suggests a potential role for glutamate as an early marker of hyperglycaemia-induced cerebral complications of type 1 diabetes. ClinicalTrials.gov NCT03286816; NCT02146404; NCT02308293.


Assuntos
Encéfalo/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Ácido Glutâmico/metabolismo , Adulto , Glicemia/metabolismo , Diabetes Mellitus Tipo 1/sangue , Feminino , Técnica Clamp de Glucose , Humanos , Hipoglicemia/sangue , Hipoglicemia/metabolismo , Espectroscopia de Ressonância Magnética , Masculino , Adulto Jovem
20.
Adv Funct Mater ; 29(19)2019 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-32132881

RESUMO

Ultrasound is the most commonly used clinical imaging modality. However, in applications requiring cell-labeling, the large size and short active lifetime of ultrasound contrast agents limit their longitudinal use. Here, 100 nm radius, clinically applicable, polymeric nanoparticles containing a liquid perfluorocarbon, which enhance ultrasound contrast during repeated ultrasound imaging over the course of at least 48 h, are described. The perfluorocarbon enables monitoring the nanoparticles with quantitative 19F magnetic resonance imaging, making these particles effective multimodal imaging agents. Unlike typical core-shell perfluorocarbon-based ultrasound contrast agents, these nanoparticles have an atypical fractal internal structure. The nonvaporizing highly hydrophobic perfluorocarbon forms multiple cores within the polymeric matrix and is, surprisingly, hydrated with water, as determined from small-angle neutron scattering and nuclear magnetic resonance spectroscopy. Finally, the nanoparticles are used to image therapeutic dendritic cells with ultrasound in vivo, as well as with 19F MRI and fluorescence imaging, demonstrating their potential for long-term in vivo multimodal imaging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA