Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell Environ ; 37(3): 643-57, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23961724

RESUMO

Unusually hot ambient temperatures (HAT) can cause pre-anthesis abortion of flowers in many diverse species, limiting crop production. This limitation is becoming more substantial with climate change. Flower primordia of passion fruit (Passiflora edulis Sims) vines exposed to HAT summers, normally abort. Flower abortion can also be triggered by gibberellin application. We screened for, and identified a genotype capable of reaching anthesis during summer as well as controlled HAT conditions, and also more resistant to gibberellin. Leaves of this genotype contained higher levels of endogenous cytokinin. We investigated a possible connection between higher cytokinin levels and response to gibberellin. Indeed, the effects of gibberellin application were partially suppressed in plants pretreated with cytokinin. Can higher cytokinin levels protect flowers from aborting under HAT conditions? In passion fruit, flowers at a specific stage showed more resistance in response to HAT after cytokinin application. We further tested this hypothesis in Arabidopsis. Transgenic lines with high or low cytokinin levels and cytokinin applications to wild-type plants supported a protective role for cytokinin on developing flowers exposed to HAT. Such findings may have important implications in future breeding programmes as well as field application of growth regulators.


Assuntos
Arabidopsis/genética , Citocininas/farmacologia , Flores/crescimento & desenvolvimento , Flores/genética , Variação Genética , Temperatura Alta , Passiflora/genética , Arabidopsis/fisiologia , Flores/efeitos dos fármacos , Frutas/efeitos dos fármacos , Frutas/genética , Genótipo , Giberelinas/farmacologia , Resposta ao Choque Térmico/efeitos dos fármacos , Resposta ao Choque Térmico/genética , Modelos Biológicos , Passiflora/efeitos dos fármacos , Passiflora/fisiologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas
2.
Front Plant Sci ; 6: 706, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26442021

RESUMO

Fruitlet abscission of mango is typically very severe, causing considerable production losses worldwide. Consequently, a detailed physiological and molecular characterization of fruitlet abscission in mango is required to describe the onset and time-dependent course of this process. To identify the underlying key mechanisms of abscission, ethephon, an ethylene releasing substance, was applied at two concentrations (600 and 7200 ppm) during the midseason drop stage of mango. The abscission process is triggered by ethylene diffusing to the abscission zone where it binds to specific receptors and thereby activating several key physiological responses at the cellular level. The treatments reduced significantly the capacity of polar auxin transport through the pedicel at 1 day after treatment and thereafter when compared to untreated pedicels. The transcript levels of the ethylene receptor genes MiETR1 and MiERS1 were significantly upregulated in the pedicel and pericarp at 1, 2, and 3 days after the ethephon application with 7200 ppm, except for MiETR1 in the pedicel, when compared to untreated fruitlet. In contrast, ethephon applications with 600 ppm did not affect expression levels of MiETR1 in the pedicel and of MiERS1 in the pericarp; however, MiETR1 in the pericarp at day 2 and MiERS1 in the pedicel at days 2 and 3 were significantly upregulated over the controls. Moreover, two novel short versions of the MiERS1 were identified and detected more often in the pedicel of treated than untreated fruitlets at all sampling times. Sucrose concentration in the fruitlet pericarp was significantly reduced to the control at 2 days after both ethephon treatments. In conclusion, it is postulated that the ethephon-induced abscission process commences with a reduction of the polar auxin transport capacity in the pedicel, followed by an upregulation of ethylene receptors and finally a decrease of the sucrose concentration in the fruitlets.

3.
Rev. biol. trop ; 67(3)jun. 2019.
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1507513

RESUMO

Intensive exploitation of mahogany wood (Swietenia macrophylla, Meliaceae) has resulted in the loss of natural populations. Somatic embryogenesis offers an alternative to clonal propagation and conservation of mahogany. This study describes biochemical (carbohydrates, total phenols, total flavonoids, protein, and plant growth regulators content) and histological characteristics of the somatic embryogenesis process in mahogany. Calli were obtained by culturing cotyledons of seeds from immature fruits for six weeks on semi-solid MS medium supplemented with 1.0 mgL-1 of kinetin and 4.0 mgL-1 of 2, 4-D. Primary callus was cultured on half strength semi-solid MS medium supplemented with 1.0 mgl-1 6-BA (6-benzylaminopurine) and embryogenic structures were obtained. Embryo development from globular-shaped somatic embryos to the cotyledonary stage was confirmed by histology and scanning electron microscopy. Shoot initiation was observed after somatic embryos were transferred to germination and maturation medium. Endogenous concentrations of carbohydrates, total phenols, total flavonoids, protein, and plant growth regulators were determined in embryogenic (EC) and non-embryogenic (NEC) calli of mahogany. Embryogenic cultures contained significantly higher concentrations of IAA (indoleacetic acid), ABA (abscisic acid), and GAs (Gibberellins 1+3+20), whereas non-embryogenic calli contained more total phenols, flavonoids and resistant starch. Fructose and glucose were not present at detectable levels in EC or NEC, whereas soluble starch and sucrose were only detectable in EC. Concentrations of total proteins, Z/ZR (Zeatin/zeatin riboside) and iP/iPA (N6-(Δ2-isopentenyl) adenine and N6-(Δ2-isopentenyl) adenosine) were similar in EC and NEC.


La explotación intensiva de la madera de caoba (Swietenia macrophylla) ha provocado la pérdida de poblaciones naturales. La embriogénesis somática ofrece una alternativa a la propagación clonal y la conservación de esta especie. Este estudio describe las características bioquímicas (contenido de carbohidratos, fenoles totales, flavonoides totales, proteínas y reguladores del crecimiento) e histológicas del proceso de embriogénesis somática en caoba. Los callos se obtuvieron cultivando cotiledones de semillas de frutos inmaduros durante seis semanas en medio MS semisólido suplementado con 1.0 mgL-1 de kinetina y 4.0 mgL-1 de 2, 4-D. Luego se cultivó el callo primario en medio MS semisólido y un suplemento de 1.0 mgl-1 BA y se obtuvieron estructuras embriogénicas. El desarrollo de embriones somáticos de forma globular a la etapa cotiledonar se confirmó por histología y microscopía electrónica de barrido. La iniciación del brote se observó después de que los embriones somáticos se transfirieron a un medio de germinación y maduración. Se determinaron las concentraciones endógenas de carbohidratos, fenoles totales, flavonoides totales, proteínas y reguladores del crecimiento en callos embriogénicos (EC) y no embriogénicos (NEC) de caoba. Los cultivos embriogénicos contenían concentraciones significativamente más altas de IAA, ABA y GA, mientras que los callos no embriogénicos contenían más fenoles totales, flavonoides y almidón resistente. La fructosa y la glucosa no estaban presentes en niveles detectables en EC o NEC, mientras que el almidón soluble y la sacarosa solo se detectaron en el EC. Las concentraciones de proteínas totales, Z / ZR e iP / iPA fueron similares en EC y NEC.

4.
Plant Physiol Biochem ; 71: 184-90, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23954797

RESUMO

Longan (Dimocarpus longan Lour.) is a subtropical evergreen fruit tree, mainly cultivated in Asia. Two putative floral integrator genes, D. longan FLOWERING LOCUS T1 and 2 (DlFT1 and DlFT2) were isolated and both translated sequences revealed a high homology to FT sequences from other plants. Moreover, two APETALA1-like (DlAP1-1 and DlAP1-2) sequences from longan were isolated and characterized. Results indicate that the sequences of these genes are highly conserved, suggesting functions in the longan flowering pathway. Ectopic expression of the longan genes in arabidopsis resulted in different flowering time phenotypes of transgenic plants. Expression experiments reveal a different action of the longan FT genes and indicate that DlFT1 is a flowering promoter, while DlFT2 acts as flowering inhibitor. Overexpression of longan AP1 genes in transgenic arabidopsis results in a range of flowering time phenotypes also including early and late flowering individuals.


Assuntos
Frutas/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Sapindaceae/metabolismo , Árvores/metabolismo , Frutas/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Árvores/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA