Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 113(3): 460-477, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36495314

RESUMO

Natural antisense long non-coding RNAs (lncNATs) are involved in the regulation of gene expression in plants, modulating different relevant developmental processes and responses to various stimuli. We have identified and characterized two lncNATs (NAT1UGT73C6 and NAT2UGT73C6 , collectively NATsUGT73C6 ) from Arabidopsis thaliana that are transcribed from a gene fully overlapping UGT73C6, a member of the UGT73C subfamily of genes encoding UDP-glycosyltransferases (UGTs). Expression of both NATsUGT73C6 is developmentally controlled and occurs independently of the transcription of UGT73C6 in cis. Downregulation of NATsUGT73C6 levels through artificial microRNAs results in a reduction of the rosette area, while constitutive overexpression of NAT1UGT73C6 or NAT2UGT73C6 leads to the opposite phenotype, an increase in rosette size. This activity of NATsUGT73C6 relies on its RNA sequence and, although modulation of UGT73C6 in cis cannot be excluded, the observed phenotypes are not a consequence of the regulation of UGT73C6 in trans. The NATsUGT73C6 levels were shown to affect cell proliferation and thus individual leaf size. Consistent with this concept, our data suggest that the NATsUGT73C6 influence the expression levels of key transcription factors involved in regulating leaf growth by modulating cell proliferation. These findings thus reveal an additional regulatory layer on the process of leaf growth. In this work, we characterized at the molecular level two long non-coding RNAs (NATsUGT73C6 ) that are transcribed in the opposite direction to UGT73C6, a gene encoding a glucosyltransferase involved in brassinosteroid homeostasis in A. thaliana. Our results indicate that NATsUGT73C6 expression influences leaf growth by acting in trans and by modulating the levels of transcription factors that are involved in the regulation of cell proliferation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Glucosiltransferases , RNA Longo não Codificante , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Genes de Plantas , Fenótipo , RNA Antissenso/genética , RNA Antissenso/metabolismo , RNA Longo não Codificante/genética , Fatores de Transcrição/metabolismo , Glucosiltransferases/genética
2.
Plant Physiol ; 193(3): 1933-1953, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37345955

RESUMO

Thousands of long intergenic noncoding RNAs (lincRNAs) have been identified in plant genomes. While some lincRNAs have been characterized as important regulators in different biological processes, little is known about the transcriptional regulation for most plant lincRNAs. Through the integration of 8 annotation resources, we defined 6,599 high-confidence lincRNA loci in Arabidopsis (Arabidopsis thaliana). For lincRNAs belonging to different evolutionary age categories, we identified major differences in sequence and chromatin features, as well as in the level of conservation and purifying selection acting during evolution. Spatiotemporal gene expression profiles combined with transcription factor (TF) chromatin immunoprecipitation (ChIP) data were used to construct a TF-lincRNA regulatory network containing 2,659 lincRNAs and 15,686 interactions. We found that properties characterizing lincRNA expression, conservation, and regulation differ between plants and animals. Experimental validation confirmed the role of 3 TFs, KANADI 1, MYB DOMAIN PROTEIN 44, and PHYTOCHROME INTERACTING FACTOR 4, as key regulators controlling root-specific lincRNA expression, demonstrating the predictive power of our network. Furthermore, we identified 58 lincRNAs, regulated by these TFs, showing strong root cell type-specific expression or chromatin accessibility, which are linked with genome-wide association studies genetic associations related to root system development and growth. The multilevel genome-wide characterization covering chromatin state information, promoter conservation, and chromatin immunoprecipitation-based TF binding, for all detectable lincRNAs across 769 expression samples, permits rapidly defining the biological context and relevance of Arabidopsis lincRNAs through regulatory networks.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , RNA Longo não Codificante , Animais , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Cromatina/genética , Estudo de Associação Genômica Ampla , Fitocromo/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fatores de Transcrição/genética
3.
Sci Adv ; 9(16): eadf5330, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37075125

RESUMO

Mixed-lineage leukemia 1 (MLL1) is a transcription activator of the HOX family, which binds to specific epigenetic marks on histone H3 through its third plant homeodomain (PHD3) domain. Through an unknown mechanism, MLL1 activity is repressed by cyclophilin 33 (Cyp33), which binds to MLL1 PHD3. We determined solution structures of Cyp33 RNA recognition motif (RRM) free, bound to RNA, to MLL1 PHD3, and to both MLL1 and the histone H3 lysine N6-trimethylated. We found that a conserved α helix, amino-terminal to the RRM domain, adopts three different positions facilitating a cascade of binding events. These conformational changes are triggered by Cyp33 RNA binding and ultimately lead to MLL1 release from the histone mark. Together, our mechanistic findings rationalize how Cyp33 binding to MLL1 can switch chromatin to a transcriptional repressive state triggered by RNA binding as a negative feedback loop.


Assuntos
Histonas , Leucemia , Humanos , Histonas/metabolismo , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Proteínas de Ligação a DNA/metabolismo , RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA