Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 26(7): 4933-40, 2010 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-20092308

RESUMO

This Article describes the preparation of carbohydrate microarrays by the immobilization of carbohydrates via microcontact printing (microCP) on glass and silicon substrates. To this end, diene-modified carbohydrates (galactose, glucose, mannose, lactose, and maltose) were printed on maleimide-terminated self-assembled monolayers (SAMs). A Diels-Alder reaction occurred exclusively in the contact area between stamp and substrate and resulted in a carbohydrate pattern on the substrate. It was found that cyclopentadiene-functionalized carbohydrates could be printed within minutes at room temperature, whereas furan-functionalized carbohydrates required long printing times and high temperatures. By successive printing, microstructured arrays of up to three different carbohydrates could be produced. Immobilization and patterning of the carbohydrates on the surfaces was investigated with contact angle measurements, X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (TOF-SIMS), and fluorescence microscopy. Furthermore, the lectins concanavalin A (ConA) and peanut agglutinin (PNA) bind to the microarrays, and the printed carbohydrates retain their characteristic selectivity toward these proteins.


Assuntos
Carboidratos/análise , Carboidratos/química , Análise em Microsséries/métodos , Vidro/química , Microscopia de Fluorescência , Modelos Teóricos , Espectroscopia Fotoeletrônica , Silício/química , Espectrometria de Massa de Íon Secundário
2.
Anal Bioanal Chem ; 393(8): 1917-21, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19241066

RESUMO

Recent publications on static secondary ion mass spectrometry (S-SIMS) focus on molecular depth profiling by using polyatomic or ultra-low energy monoatomic projectiles. Since their applicability depends on the relationship between the ion yield and the depth, which is hard to obtain without extensive studies, a combination of a wear test method with S-SIMS surface analysis was performed in the current study. Using this non-sputtering procedure, the relation between the signal intensity and the local concentration remains in principle the same as that at the surface (which is easy to determine). Mechanical erosion was successfully applied to expose sub-surface material from organic multilayers. Through surface analysis with S-SIMS on the gradually exposed deeper planes, molecular depth profiles could be obtained. The study was conducted on a model system relevant to offset printing, consisting of two polymer layers, containing dyes and a surfactant, cast on an Al substrate.


Assuntos
Dimetilpolisiloxanos/química , Corantes de Rosanilina/química , Espectrometria de Massa de Íon Secundário/métodos , Tensoativos/química , Estrutura Molecular , Propriedades de Superfície , Fatores de Tempo
3.
Anal Chem ; 80(16): 6235-44, 2008 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-18630928

RESUMO

A model alkane molecule, triacontane, is used to assess the effects of condensed gold and silver nanoparticles on the molecular ion yields upon atomic (Ga(+) and In(+)) and polyatomic (C60(+) and Bi3(+)) ion bombardment in metal-assisted secondary ion mass spectrometry (MetA-SIMS). Molecular films spin-coated on silicon were metallized using a sputter-coater system, in order to deposit controlled quantities of gold and silver on the surface (from 0 to 15 nm equivalent thickness). The effects of gold and silver islets condensed on triacontane are also compared to the situation of thin triacontane overlayers on metallic substrates (gold and silver). The results focus primarily on the measured yields of quasi-molecular ions, such as (M - H)(+) and (2M - 2H)(+), and metal-cationized molecules, such as (M + Au)(+) and (M + Ag)(+), as a function of the quantity of metal on the surface. They confirm the absence of a simple rule to explain the secondary ion yield improvement in MetA-SIMS. The behavior is strongly dependent on the specific projectile/metal couple used for the experiment. Under atomic bombardment (Ga(+), In(+)), the characteristic ion yields an increase with the gold dose up to approximately 6 nm equivalent thickness. The yield enhancement factor between gold-metallized and pristine samples can be as large as approximately 70 (for (M - H)(+) under Ga(+) bombardment; 10 nm of Au). In contrast, with cluster projectiles such as Bi3(+) and C60(+), the presence of gold and silver leads to a dramatic molecular ion yield decrease. Cluster projectiles prove to be beneficial for triacontane overlayers spin-coated on silicon or metal substrates (Au, Ag) but not in the situation of MetA-SIMS. The fundamental difference of behavior between atomic and cluster primary ions is tentatively explained by arguments involving the different energy deposition mechanisms of these projectiles. Our results also show that Au and Ag nanoparticles do not induce the same behavior in MetA-SIMS of triacontane. The microstructures of the metallized layers are also different. While metallic substrates provide higher yields than metal islet overlayers in the case of silver, whatever the projectile used, the situation is reversed with gold.

4.
Rapid Commun Mass Spectrom ; 22(10): 1481-96, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18401858

RESUMO

Static secondary ion mass spectrometry (S-SIMS) is one of the potentially most powerful and versatile tools for the analysis of surface components at the monolayer level. Current improvements in detection limit (LOD) and molecular specificity rely on the optimisation of the desorption-ionisation (DI) process. As an alternative to monoatomic projectiles, polyatomic primary ion (P.I.) bombardment increases ion yields non-linearly. Common P.I. sources are Ga+ (liquid metal ion gun (LMIG), SF5+ (electron ionisation) and the newer Au(n)+, Bi(n)q+ (both LMIG) and C60+ (electron ionisation) sources. In this study the ion yield improvement obtained by using the newly developed ion sources is assessed. Two dyes (zwitterionic and/or thermolabile polar functionalities on a largely conjugated backbone) were analysed as a thin layer using Ga+, SF5+, C60+, Bi+, Bi3(2+) and Bi5(2+) projectiles under static conditions. The study aims at evaluating the improvement in LOD, useful and characteristic yield and molecular specificity. The corrected total ion count values for the different P.I. sources are compared for different instruments to obtain a rough estimate of the improvements. Furthermore, tentative ionisation and fragmentation schemes are provided to describe the generation of radical and adduct ions. Characteristic ion yields are discussed for the different P.I. sources. An overview of the general appearances of the mass spectra obtained with the different P.I. sources is given to stress the major improvement provided by polyatomic P.I.s in yielding information at higher m/z values.

5.
J Sep Sci ; 30(16): 2570-82, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17876765

RESUMO

A comparison is made between two high resolution, surface-based, mass spectrometric methods: time-of-flight secondary ion mass spectrometry (TOF-SIMS) and matrix-assisted laser desorption/ionisation mass spectrometry (MALDI TOF-MS) in indication of abietic and gibberellic acids molecular profiles on different chromatographic thin layers. The analytes were applied to silica gel chromatographic thin layers with SIMS on-line interfacing channel, monolithic silica gel ultra-thin layers, and thin layers specifically designed for direct Raman spectroscopic analysis. Two MALDI matrices were used in this research: ferulic acid and 2,5-dihydroxybenzoic acid. The silica gel SIMS-interfacing channel strongly supported formation of numerous different MALDI MS fragments with abietic and gibberellic acids, and ferulic acid matrix. The most intense fragments belonged to [M-OH](+) and [M](+) ions from ferulic acid. Intense conjugates were detected with gibberellic acid. The MALDI MS spectrum from the monolithic silica gel surface showed very low analyte signal intensity and it was not possible to obtain MALDI spectra from a Raman spectroscopy treated chromatographic layer. The MALDI TOF MS gibberellic acid fragmentation profile was shielded by the matrix used and was accompanied by poor analyte identification. The most useful TOF-SIMS analytical signal response was obtained from analytes separated on monolithic silica gel and a SIMS-interfacing modified silica gel surface. New horizons with nanostructured surfaces call for high resolution MS methods (which cannot readily be miniaturised like many optical and electrochemical methods) to be integrated in chip and nanoscale detection systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA