Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 7844, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36543773

RESUMO

Channelrhodopsins are light-gated ion channels used to control excitability of designated cells in large networks with high spatiotemporal resolution. While ChRs selective for H+, Na+, K+ and anions have been discovered or engineered, Ca2+-selective ChRs have not been reported to date. Here, we analyse ChRs and mutant derivatives with regard to their Ca2+ permeability and improve their Ca2+ affinity by targeted mutagenesis at the central selectivity filter. The engineered channels, termed CapChR1 and CapChR2 for calcium-permeable channelrhodopsins, exhibit reduced sodium and proton conductance in connection with strongly improved Ca2+ permeation at negative voltage and low extracellular Ca2+ concentrations. In cultured cells and neurons, CapChR2 reliably increases intracellular Ca2+ concentrations. Moreover, CapChR2 can robustly trigger Ca2+ signalling in hippocampal neurons. When expressed together with genetically encoded Ca2+ indicators in Drosophila melanogaster mushroom body output neurons, CapChRs mediate light-evoked Ca2+ entry in brain explants.


Assuntos
Cálcio , Drosophila melanogaster , Animais , Cálcio/metabolismo , Channelrhodopsins/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Canais Iônicos/fisiologia , Neurônios/metabolismo
2.
Elife ; 112022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-36250621

RESUMO

In vertebrates, several forms of memory-relevant synaptic plasticity involve postsynaptic rearrangements of glutamate receptors. In contrast, previous work indicates that Drosophila and other invertebrates store memories using presynaptic plasticity of cholinergic synapses. Here, we provide evidence for postsynaptic plasticity at cholinergic output synapses from the Drosophila mushroom bodies (MBs). We find that the nicotinic acetylcholine receptor (nAChR) subunit α5 is required within specific MB output neurons for appetitive memory induction but is dispensable for aversive memories. In addition, nAChR α2 subunits mediate memory expression and likely function downstream of α5 and the postsynaptic scaffold protein discs large (Dlg). We show that postsynaptic plasticity traces can be induced independently of the presynapse, and that in vivo dynamics of α2 nAChR subunits are changed both in the context of associative and non-associative (familiarity) memory formation, underlying different plasticity rules. Therefore, regardless of neurotransmitter identity, key principles of postsynaptic plasticity support memory storage across phyla.


Assuntos
Colinérgicos , Drosophila , Animais
3.
Curr Biol ; 29(21): 3611-3621.e3, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31630955

RESUMO

Slow-wave rhythms characteristic of deep sleep oscillate in the delta band (0.5-4 Hz) and can be found across various brain regions in vertebrates. Across phyla, however, an understanding of the mechanisms underlying oscillations and how these link to behavior remains limited. Here, we discover compound delta oscillations in the sleep-regulating R5 network of Drosophila. We find that the power of these slow-wave oscillations increases with sleep need and is subject to diurnal variation. Optical multi-unit voltage recordings reveal that single R5 neurons get synchronized by activating circadian input pathways. We show that this synchronization depends on NMDA receptor (NMDAR) coincidence detector function, and that an interplay of cholinergic and glutamatergic inputs regulates oscillatory frequency. Genetically targeting the coincidence detector function of NMDARs in R5, and thus the uncovered mechanism underlying synchronization, abolished network-specific compound slow-wave oscillations. It also disrupted sleep and facilitated light-induced wakening, establishing a role for slow-wave oscillations in regulating sleep and sensory gating. We therefore propose that the synchronization-based increase in oscillatory power likely represents an evolutionarily conserved, potentially "optimal," strategy for constructing sleep-regulating sensory gates.


Assuntos
Drosophila melanogaster/fisiologia , Rede Nervosa/fisiologia , Sono de Ondas Lentas/fisiologia , Animais , Feminino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA