Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Neuroimage ; 235: 118029, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33836269

RESUMO

Topographic maps, a key principle of brain organization, emerge during development. It remains unclear, however, whether topographic maps can represent a new sensory experience learned in adulthood. MaMe, a congenitally blind individual, has been extensively trained in adulthood for perception of a 2D auditory-space (soundscape) where the y- and x-axes are represented by pitch and time, respectively. Using population receptive field mapping we found neural populations tuned topographically to pitch, not only in the auditory cortices but also in the parietal and occipito-temporal cortices. Topographic neural tuning to time was revealed in the parietal and occipito-temporal cortices. Some of these maps were found to represent both axes concurrently, enabling MaMe to represent unique locations in the soundscape space. This case study provides proof of concept for the existence of topographic maps tuned to the newly learned soundscape dimensions. These results suggest that topographic maps can be adapted or recycled in adulthood to represent novel sensory experiences.


Assuntos
Percepção Auditiva/fisiologia , Cegueira/fisiopatologia , Encéfalo/fisiologia , Aprendizagem/fisiologia , Orientação , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade
2.
Exp Brain Res ; 235(1): 181-191, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27683004

RESUMO

The aim of the present study was to investigate the impact of dynamic distractors on the time-course of oculomotor selection using saccade trajectory deviations. Participants were instructed to make a speeded eye movement (pro-saccade) to a target presented above or below the fixation point while an irrelevant distractor was presented. Four types of distractors were varied within participants: (1) static, (2) flicker, (3) rotating apparent motion and (4) continuous motion. The eccentricity of the distractor was varied between participants. The results showed that saccadic trajectories curved towards distractors presented near the vertical midline; no reliable deviation was found for distractors presented further away from the vertical midline. Differences between the flickering and rotating distractor were found when distractor eccentricity was small and these specific effects developed over time such that there was a clear differentiation between saccadic deviation based on apparent motion for long-latency saccades, but not short-latency saccades. The present results suggest that the influence on performance of apparent motion stimuli is relatively delayed and acts in a more sustained manner compared to the influence of salient static, flickering and continuous moving stimuli.


Assuntos
Atenção/fisiologia , Movimentos Oculares/fisiologia , Fusão Flicker/fisiologia , Percepção de Movimento/fisiologia , Orientação/fisiologia , Tempo de Reação/fisiologia , Análise de Variância , Feminino , Humanos , Masculino , Estimulação Luminosa , Estudantes , Fatores de Tempo , Universidades
3.
J Deaf Stud Deaf Educ ; 22(4): 422-433, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28961871

RESUMO

Multisensory interactions in deaf cognition are largely unexplored. Unisensory studies suggest that behavioral/neural changes may be more prominent for visual compared to tactile processing in early deaf adults. Here we test whether such an asymmetry results in increased saliency of vision over touch during visuo-tactile interactions. About 23 early deaf and 25 hearing adults performed two consecutive visuo-tactile spatial interference tasks. Participants responded either to the elevation of the tactile target while ignoring a concurrent visual distractor at central or peripheral locations (respond to touch/ignore vision), or they performed the opposite task (respond to vision/ignore touch). Multisensory spatial interference emerged in both tasks for both groups. Crucially, deaf participants showed increased interference compared to hearing adults when they attempted to respond to tactile targets and ignore visual distractors, with enhanced difficulties with ipsilateral visual distractors. Analyses on task-order revealed that in deaf adults, interference of visual distractors on tactile targets was much stronger when this task followed the task in which vision was behaviorally relevant (respond to vision/ignore touch). These novel results suggest that behavioral/neural changes related to early deafness determine enhanced visual dominance during visuo-tactile multisensory conflict.


Assuntos
Surdez/psicologia , Adulto , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estimulação Luminosa , Tempo de Reação , Processamento Espacial , Percepção do Tato , Percepção Visual , Adulto Jovem
4.
Brain Cogn ; 96: 12-27, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25829265

RESUMO

Previous work investigating the consequence of bilateral deafness on attentional selection suggests that experience-dependent changes in this population may result in increased automatic processing of stimulus-driven visual information (e.g., saliency). However, adaptive behavior also requires observers to prioritize goal-driven information relevant to the task at hand. In order to investigate whether auditory deprivation alters the balance between these two components of attentional selection, we assessed the time-course of overt visual selection in deaf adults. Twenty early-deaf adults and twenty hearing controls performed an oculomotor additional singleton paradigm. Participants made a speeded eye-movement to a unique orientation target, embedded among homogenous non-targets and one additional unique orientation distractor that was more, equally or less salient than the target. Saliency was manipulated through color. For deaf participants proficiency in sign language was assessed. Overall, results showed that fast initiated saccades were saliency-driven, whereas later initiated saccades were goal-driven. However, deaf participants were overall slower than hearing controls at initiating saccades and also less captured by task-irrelevant salient distractors. The delayed oculomotor behavior of deaf adults was not explained by any of the linguistic measures acquired. Importantly, a multinomial model applied to the data revealed a comparable evolution over time of the underlying saliency- and goal-driven processes between the two groups, confirming the crucial role of saccadic latencies in determining the outcome of visual selection performance. The present findings indicate that prioritization of saliency-driven information is not an unavoidable phenomenon in deafness. Possible neural correlates of the documented behavioral effect are also discussed.


Assuntos
Atenção/fisiologia , Surdez/fisiopatologia , Movimentos Oculares/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Desempenho Psicomotor/fisiologia , Adulto , Feminino , Objetivos , Humanos , Masculino , Modelos Psicológicos , Movimentos Sacádicos/fisiologia , Adulto Jovem
5.
Neuroimage ; 94: 172-184, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24636881

RESUMO

Although cross-modal recruitment of early sensory areas in deafness and blindness is well established, the constraints and limits of these plastic changes remain to be understood. In the case of human deafness, for instance, it is known that visual, tactile or visuo-tactile stimuli can elicit a response within the auditory cortices. Nonetheless, both the timing of these evoked responses and the functional contribution of cross-modally recruited areas remain to be ascertained. In the present study, we examined to what extent auditory cortices of deaf humans participate in high-order visual processes, such as visual change detection. By measuring visual ERPs, in particular the visual MisMatch Negativity (vMMN), and performing source localization, we show that individuals with early deafness (N=12) recruit the auditory cortices when a change in motion direction during shape deformation occurs in a continuous visual motion stream. Remarkably this "auditory" response for visual events emerged with the same timing as the visual MMN in hearing controls (N=12), between 150 and 300 ms after the visual change. Furthermore, the recruitment of auditory cortices for visual change detection in early deaf was paired with a reduction of response within the visual system, indicating a shift from visual to auditory cortices of part of the computational process. The present study suggests that the deafened auditory cortices participate at extracting and storing the visual information and at comparing on-line the upcoming visual events, thus indicating that cross-modally recruited auditory cortices can reach this level of computation.


Assuntos
Córtex Auditivo/fisiopatologia , Surdez/fisiopatologia , Percepção de Forma , Percepção de Movimento , Rede Nervosa/fisiopatologia , Plasticidade Neuronal , Recrutamento Neurofisiológico , Adulto , Progressão da Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estimulação Luminosa/métodos , Tempo de Reação , Adulto Jovem
6.
Exp Brain Res ; 232(4): 1335-41, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24477765

RESUMO

Early deaf adults typically respond faster than hearing controls when performing a speeded simple detection on visual targets. Whether this response time advantage can generalise to another intact modality (touch) or it is instead specific to visual processing remained unexplored. We tested eight early deaf adults and twelve hearing controls in a simple detection task, with visual or tactile targets delivered on the arms and occupying the same locations in external space. Catch trials were included in the experimental paradigm. Results revealed a response time advantage in deaf adults compared to hearing controls, selectively for visual targets. This advantage did not extend to touch. The number of anticipation errors was negligible and comparable in both groups. The present findings strengthen the notion that response time advantage in deaf adults emerges as a consequence of changes specific to visual processing. They also exclude the involvement of sensory-unspecific cognitive mechanisms in this improvement (e.g. increased impulsivity in initiation of response, longer-lasting sustained attention or higher motivation to perform the task). Finally, they provide initial evidence that the intact sensory modalities can reorganise independently from each other following early auditory deprivation.


Assuntos
Surdez/fisiopatologia , Estimulação Luminosa/métodos , Tempo de Reação/fisiologia , Tato/fisiologia , Percepção Visual/fisiologia , Adulto , Feminino , Humanos , Masculino , Estimulação Física/métodos , Desempenho Psicomotor/fisiologia , Fatores de Tempo , Visão Ocular/fisiologia
7.
Commun Biol ; 7(1): 495, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658666

RESUMO

Parkinson's Disease (PD)-typical declines in gait coordination are possibly explained by weakness in bilateral cortical and muscular connectivity. Here, we seek to determine whether this weakness and consequent decline in gait coordination is affected by dopamine levels. To this end, we compare cortico-cortical, cortico-muscular, and intermuscular connectivity and gait outcomes between body sides in people with PD under ON and OFF medication states, and in older adults. In our study, participants walked back and forth along a 12 m corridor. Gait events (heel strikes and toe-offs) and electrical cortical and muscular activities were measured and used to compute cortico-cortical, cortico-muscular, and intermuscular connectivity (i.e., coherences in the alpha, beta, and gamma bands), as well as features characterizing gait performance (e.g., the step-timing coordination, length, and speed). We observe that people with PD, mainly during the OFF medication, walk with reduced step-timing coordination. Additionally, our results suggest that dopamine intake in PD increases the overall cortico-muscular connectivity during the stance and swing phases of gait. We thus conclude that dopamine corrects defective feedback caused by impaired sensory-information processing and sensory-motor integration, thus increasing cortico-muscular coherences in the alpha bands and improving gait.


Assuntos
Dopamina , Marcha , Doença de Parkinson , Humanos , Doença de Parkinson/fisiopatologia , Doença de Parkinson/tratamento farmacológico , Masculino , Dopamina/metabolismo , Feminino , Idoso , Marcha/efeitos dos fármacos , Pessoa de Meia-Idade , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiopatologia
8.
Sci Rep ; 14(1): 9, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167434

RESUMO

Movement deterioration is the hallmark of Parkinson's disease (PD), characterized by levodopa-induced motor-fluctuations (i.e., symptoms' variability related to the medication cycle) in advanced stages. However, motor symptoms are typically too sporadically and/or subjectively assessed, ultimately preventing the effective monitoring of their progression, and thus leading to suboptimal treatment/therapeutic choices. Smartwatches (SW) enable a quantitative-oriented approach to motor-symptoms evaluation, namely home-based monitoring (HBM) using an embedded inertial measurement unit. Studies validated such approach against in-clinic evaluations. In this work, we aimed at delineating personalized motor-fluctuations' profiles, thus capturing individual differences. 21 advanced PD patients with motor fluctuations were monitored for 2 weeks using a SW and a smartphone-dedicated app (Intel Pharma Analytics Platform). The SW continuously collected passive data (tremor, dyskinesia, level of activity using dedicated algorithms) and active data, i.e., time-up-and-go, finger tapping, hand tremor and hand rotation carried out daily, once in OFF and once in ON levodopa periods. We observed overall high compliance with the protocol. Furthermore, we observed striking differences among the individual patterns of symptoms' levodopa-related variations across the HBM, allowing to divide our participants among four data-driven, motor-fluctuations' profiles. This highlights the potential of HBM using SW technology for revolutionizing clinical practices.


Assuntos
Levodopa , Doença de Parkinson , Humanos , Levodopa/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/diagnóstico , Antiparkinsonianos/uso terapêutico , Smartphone , Tremor
9.
Neuropsychologia ; 190: 108685, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37741551

RESUMO

Accumulating evidence in the last decades has given rise to a new theory of brain organization, positing that cortical regions are recruited for specific tasks irrespective of the sensory modality via which information is channeled. For instance, the visual reading network has been shown to be recruited for reading via the tactile Braille code in congenitally blind adults. Yet, how rapidly non-typical sensory input modulates activity in typically visual regions is yet to be explored. To this aim, we developed a novel reading orthography, termed OVAL, enabling congenitally blind adults to quickly acquire reading via the auditory modality. OVAL uses the EyeMusic, a visual-to-auditory sensory-substitution-device (SSD) to transform visually presented letters optimized for auditory transformation into sound. Using fMRI, we show modulation in the right ventral visual stream following 2-h of same-day training. Crucially, following more extensive training (i.e., ∼12 h) we show that OVAL reading recruits the left ventral visual stream including the location of the Visual Word Form Area, a key graphene-responsive region within the visual reading network. Our results show that while after 2 h of SSD training we can already observe the recruitment of the deprived ventral visual stream by auditory stimuli, computation-selective cross-modal recruitment requires longer training to establish.


Assuntos
Encéfalo , Aprendizagem , Adulto , Humanos , Tato , Mapeamento Encefálico , Som , Imageamento por Ressonância Magnética , Cegueira
10.
PLoS One ; 18(6): e0287802, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37352216

RESUMO

[This corrects the article DOI: 10.1371/journal.pone.0250281.].

11.
Parkinsonism Relat Disord ; 113: 105476, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37321936

RESUMO

INTRODUCTION: Freezing of gait (FoG) is a debilitating symptom of advanced Parkinson's disease (PD) characterized by a sudden, episodic stepping arrest despite the intention to continue walking. The etiology of FoG is still unknown, but accumulating evidence unraveled physiological signatures of the autonomic nervous system (ANS) around FoG episodes. Here we aim to investigate for the first time whether detecting a predisposition for upcoming FoG events from ANS activity measured at rest is possible. METHODS: We recorded heart-rate for 1-min while standing in 28 persons with PD with FoG (PD + FoG), while OFF, and in 21 elderly controls (EC). Then, PD + FoG participants performed walking trials containing FoG-triggering events (e.g., turns). During these trials, n = 15 did experience FoG (PD + FoG+), while n = 13 did not (PD + FoG-). Most PD participants (n = 20: 10 PD + FoG+ and 10 PD + FoG-) repeated the experiment 2-3 weeks later, while ON, and none experienced FoG. We then analyzed heart-rate variability (HRV), i.e., the fluctuations in time intervals between adjacent heartbeats, mainly generated by brain-heart interactions. RESULTS: During OFF, HRV was significantly lower in PD + FoG + participants, reflecting imbalanced sympathetic/parasympathetic activity and disrupted self-regulatory capacity. PD + FoG- and EC participants showed comparable (higher) HRV. During ON, HRV did not differ among groups. HRV values did not correlate with age, PD duration, levodopa consumption, nor motor -symptoms severity scores. CONCLUSIONS: Overall, these results document for the first time a relation between HRV at rest and FoG presence/absence during gait trials, expanding previous evidence regarding the involvement of ANS in FoG.


Assuntos
Transtornos Neurológicos da Marcha , Doença de Parkinson , Humanos , Idoso , Doença de Parkinson/complicações , Frequência Cardíaca , Transtornos Neurológicos da Marcha/etiologia , Marcha/fisiologia , Caminhada/fisiologia , Suscetibilidade a Doenças/complicações
12.
Hum Mov Sci ; 88: 103069, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36871477

RESUMO

BACKGROUND: Vertical perturbations are one major cause of falling. Incidentally, while conducting a comprehensive study comparing effects of vertical versus horizontal perturbations, we commonly observed a stumbling-like response induced by upward perturbations. The present study describes and characterizes this stumbling effect. METHODS: Fourteen individuals (10 male; 27 ± 4 yr) walked self-paced on a treadmill embedded in a moveable platform and synchronized to a virtual reality system. Participants experienced 36 perturbations (12 types). Here, we report only on upward perturbations. We determined stumbling based on visual inspection of recorded videos, and calculated stride time and anteroposterior, whole-body center of mass (COM) distance relative to the heel, i.e., COM-to-heel distance, extrapolated COM (xCOM) and margin of stability (MOS) before and after perturbation. RESULTS: From 68 upward perturbations across 14 participants, 75% provoked stumbling. During the first gait cycle post-perturbation, stride time decreased in the perturbed foot and the unperturbed foot (perturbed = 1.004 s vs. baseline = 1.119 s and unperturbed = 1.017 s vs. baseline = 1.125 s, p < 0.001). In the perturbed foot, the difference was larger in stumbling-provoking perturbations (stumbling: 0.15 s vs. non-stumbling: 0.020 s, p = 0.004). In addition, the COM-to-heel distance decreased during the first and second gait cycles after perturbation in both feet (first cycle: 0.58 m, second cycle: 0.665 m vs. baseline: 0.72 m, p-values<0.001). During the first gait cycle, COM-to-heel distance was larger in the perturbed foot compared to the unperturbed foot (perturbed foot: 0.61 m vs. unperturbed foot: 0.55 m, p < 0.001). MOS decreased during the first gait cycle, whereas the xCOM increased during the second through fourth gait cycles post-perturbation (maximal xCOM at baseline: 0.5 m, second cycle: 0.63 m, third cycle: 0.66 m, fourth cycle: 0.64 m, p < 0.001). CONCLUSIONS: Our results show that upward perturbations can induce a stumbling effect, which - with further testing - has the potential to be translated into balance training to reduce fall risk, and for method standardization in research and clinical practice.


Assuntos
Marcha , Equilíbrio Postural , Humanos , Masculino , Fenômenos Biomecânicos , Equilíbrio Postural/fisiologia , Marcha/fisiologia , Caminhada/fisiologia , Pé/fisiologia
13.
Front Neurosci ; 16: 962817, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36711132

RESUMO

As neuroscience and rehabilitative techniques advance, age-old questions concerning the visual experience of those who gain sight after blindness, once thought to be philosophical alone, take center stage and become the target for scientific inquiries. In this study, we employ a battery of visual perception tasks to study the unique experience of a small group of children who have undergone vision-restoring cataract removal surgery as part of the Himalayan Cataract Project. We tested their abilities to perceive in three dimensions (3D) using a binocular rivalry task and the Brock string task, perceive visual illusions, use cross-modal mappings between touch and vision, and spatially group based on geometric cues. Some of the children in this study gained a sense of sight for the first time in their lives, having been born with bilateral congenital cataracts, while others suffered late-onset blindness in one eye alone. This study simultaneously supports yet raises further questions concerning Hubel and Wiesel's critical periods theory and provides additional insight into Molyneux's problem, the ability to correlate vision with touch quickly. We suggest that our findings present a relatively unexplored intermediate stage of 3D vision development. Importantly, we spotlight some essential geometrical perception visual abilities that strengthen the idea that spontaneous geometry intuitions arise independently from visual experience (and education), thus replicating and extending previous studies. We incorporate a new model, not previously explored, of testing children with congenital cataract removal surgeries who perform the task via vision. In contrast, previous work has explored these abilities in the congenitally blind via touch. Taken together, our findings provide insight into the development of what is commonly known as the visual system in the visually deprived and highlight the need to further empirically explore an amodal, task-based interpretation of specializations in the development and structure of the brain. Moreover, we propose a novel objective method, based on a simple binocular rivalry task and the Brock string task, for determining congenital (early) vs. late blindness where medical history and records are partial or lacking (e.g., as is often the case in cataract removal cases).

14.
Sci Rep ; 12(1): 4330, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35288597

RESUMO

Unlike sighted individuals, congenitally blind individuals have little to no experience with face shapes. Instead, they rely on non-shape cues, such as voices, to perform character identification. The extent to which face-shape perception can be learned in adulthood via a different sensory modality (i.e., not vision) remains poorly explored. We used a visual-to-auditory Sensory Substitution Device (SSD) that enables conversion of visual images to the auditory modality while preserving their visual characteristics. Expert SSD users were systematically taught to identify cartoon faces via audition. Following a tailored training program lasting ~ 12 h, congenitally blind participants successfully identified six trained faces with high accuracy. Furthermore, they effectively generalized their identification to the untrained, inverted orientation of the learned faces. Finally, after completing the extensive 12-h training program, participants learned six new faces within 2 additional hours of training, suggesting internalization of face-identification processes. Our results document for the first time that facial features can be processed through audition, even in the absence of visual experience across the lifespan. Overall, these findings have important implications for both non-visual object recognition and visual rehabilitation practices and prompt the study of the neural processes underlying auditory face perception in the absence of vision.


Assuntos
Percepção Auditiva , Percepção Visual , Adulto , Cegueira , Cabeça , Humanos , Aprendizagem
15.
Front Neurosci ; 16: 921321, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36263367

RESUMO

Previous evidence suggests that visual experience is crucial for the emergence and tuning of the typical neural system for face recognition. To challenge this conclusion, we trained congenitally blind adults to recognize faces via visual-to-auditory sensory-substitution (SDD). Our results showed a preference for trained faces over other SSD-conveyed visual categories in the fusiform gyrus and in other known face-responsive-regions of the deprived ventral visual stream. We also observed a parametric modulation in the same cortical regions, for face orientation (upright vs. inverted) and face novelty (trained vs. untrained). Our results strengthen the conclusion that there is a predisposition for sensory-independent and computation-specific processing in specific cortical regions that can be retained in life-long sensory deprivation, independently of previous perceptual experience. They also highlight that if the right training is provided, such cortical preference maintains its tuning to what were considered visual-specific face features.

16.
Neuropsychologia ; 173: 108305, 2022 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-35752268

RESUMO

The phenomenology of the blind has provided an age-old, unparalleled means of exploring the enigmatic link between the brain and mind. This paper delves into the unique phenomenological experience of a man who became blind in adulthood. He subsequently underwent both an Argus II retinal prosthesis implant and training, and extensive training on the EyeMusic visual to auditory sensory substitution device (SSD), thereby becoming the first reported case to date of dual proficiency with both devices. He offers a firsthand account into what he considers the great potential of combining sensory substitution devices with visual prostheses as part of a complete visual restoration protocol. While the Argus II retinal prosthesis alone provided him with immediate visual percepts by way of electrically stimulated phosphenes elicited by the device, the EyeMusic SSD requires extensive training from the onset. Yet following the extensive training program with the EyeMusic sensory substitution device, our subject reports that the sensory substitution device allowed him to experience a richer, more complex perceptual experience, that felt more "second nature" to him, while the Argus II prosthesis (which also requires training) did not allow him to achieve the same levels of automaticity and transparency. Following long-term use of the EyeMusic SSD, our subject reported that visual percepts representing mainly, but not limited to, colors portrayed by the EyeMusic SSD are elicited in association with auditory stimuli, indicating the acquisition of a high level of automaticity. Finally, the case study indicates an additive benefit to the combination of both devices on the user's subjective phenomenological visual experience.


Assuntos
Próteses Visuais , Adulto , Cegueira/cirurgia , Humanos , Masculino , Fosfenos , Transtornos da Visão
17.
Front Hum Neurosci ; 16: 1058093, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36776219

RESUMO

Humans, like most animals, integrate sensory input in the brain from different sensory modalities. Yet humans are distinct in their ability to grasp symbolic input, which is interpreted into a cognitive mental representation of the world. This representation merges with external sensory input, providing modality integration of a different sort. This study evaluates the Topo-Speech algorithm in the blind and visually impaired. The system provides spatial information about the external world by applying sensory substitution alongside symbolic representations in a manner that corresponds with the unique way our brains acquire and process information. This is done by conveying spatial information, customarily acquired through vision, through the auditory channel, in a combination of sensory (auditory) features and symbolic language (named/spoken) features. The Topo-Speech sweeps the visual scene or image and represents objects' identity by employing naming in a spoken word and simultaneously conveying the objects' location by mapping the x-axis of the visual scene or image to the time it is announced and the y-axis by mapping the location to the pitch of the voice. This proof of concept study primarily explores the practical applicability of this approach in 22 visually impaired and blind individuals. The findings showed that individuals from both populations could effectively interpret and use the algorithm after a single training session. The blind showed an accuracy of 74.45%, while the visually impaired had an average accuracy of 72.74%. These results are comparable to those of the sighted, as shown in previous research, with all participants above chance level. As such, we demonstrate practically how aspects of spatial information can be transmitted through non-visual channels. To complement the findings, we weigh in on debates concerning models of spatial knowledge (the persistent, cumulative, or convergent models) and the capacity for spatial representation in the blind. We suggest the present study's findings support the convergence model and the scenario that posits the blind are capable of some aspects of spatial representation as depicted by the algorithm comparable to those of the sighted. Finally, we present possible future developments, implementations, and use cases for the system as an aid for the blind and visually impaired.

18.
Artigo em Inglês | MEDLINE | ID: mdl-37015662

RESUMO

Freezing of Gait (FOG) is among the most debilitating symptoms of Parkinson's Disease (PD), characterized by a sudden inability to generate effective stepping. In preparation for the development of a real-time FOG prediction and intervention device, this work presents a novel FOG prediction algorithm based on detection of altered interlimb coordination of the legs, as measured using two inertial movement sensors and analyzed using a wavelet coherence algorithm. METHODS: Fourteen participants with PD (in OFF state) were asked to walk in challenging conditions (e.g. with turning, dual-task walking, etc.) while wearing inertial motion sensors (waist, 2 shanks) and being videotaped. Occasionally, participants were asked to voluntarily stop (VOL). FOG and VOL events were identified by trained researchers based on videos. Wavelet analysis was performed on shank sagittal velocity signals and a synchronization loss threshold (SLT) was defined and compared between FOG and VOL. A proof-of-concept analysis was performed for a subset of the data to obtain preliminary classification characteristics of the novel measure. RESULTS: 128 FOG and 42 VOL episodes were analyzed. SLT occurred earlier for FOG (MED=1.81 sec prior to stop, IQR=1.57) than for VOL events (MED=0.22 sec, IQR=0.76) (Z=-4.3, p<0.001, ES=1.15). These time differences were not related with measures of disease severity. Preliminary results demonstrate sensitivity of 98%, specificity of 42% (mostly due to 'turns' detection) and balanced accuracy of 70% for SLT-based prediction, with good differentiation between FOG and VOL. CONCLUSIONS: Wavelet analysis provides a relatively simple, promising approach for prediction of FOG in people with PD.

19.
Cognition ; 212: 104716, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33895652

RESUMO

Geometrical intuitions spontaneously drive visuo-spatial reasoning in human adults, children and animals. Is their emergence intrinsically linked to visual experience, or does it reflect a core property of cognition shared across sensory modalities? To address this question, we tested the sensitivity of blind-from-birth adults to geometrical-invariants using a haptic deviant-figure detection task. Blind participants spontaneously used many geometric concepts such as parallelism, right angles and geometrical shapes to detect intruders in haptic displays, but experienced difficulties with symmetry and complex spatial transformations. Across items, their performance was highly correlated with that of sighted adults performing the same task in touch (blindfolded) and in vision, as well as with the performances of uneducated preschoolers and Amazonian adults. Our results support the existence of an amodal core-system of geometry that arises independently of visual experience. However, performance at selecting geometric intruders was generally higher in the visual compared to the haptic modality, suggesting that sensory-specific spatial experience may play a role in refining the properties of this core-system of geometry.


Assuntos
Percepção do Tato , Adulto , Cegueira , Criança , Humanos , Conhecimento , Matemática , Tato , Visão Ocular
20.
Sci Rep ; 11(1): 10636, 2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-34017027

RESUMO

Perceiving the spatial location and physical dimensions of touched objects is crucial for goal-directed actions. To achieve this, our brain transforms skin-based coordinates into a reference frame by integrating visual and posture information. In the current study, we examine the role of posture in mapping tactile sensations to a visual image. We developed a new visual-to-touch sensory substitution device that transforms images into a sequence of vibrations on the arm. 52 blindfolded participants performed spatial recognition tasks in three different arm postures and had to switch postures between trial blocks. As participants were not told which side of the device is down and which is up, they could choose how to map its vertical axis in their responses. Contrary to previous findings, we show that new proprioceptive inputs can be overridden in mapping tactile sensations. We discuss the results within the context of the spatial task and the various sensory contributions to the process.


Assuntos
Percepção do Tato/fisiologia , Tato/fisiologia , Percepção Visual/fisiologia , Adulto , Feminino , Humanos , Masculino , Postura/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA