Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Am J Hum Genet ; 95(2): 143-61, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-25065914

RESUMO

Intragenic copy-number variants (CNVs) contribute to the allelic spectrum of both Mendelian and complex disorders. Although pathogenic deletions and duplications in SPAST (mutations in which cause autosomal-dominant spastic paraplegia 4 [SPG4]) have been described, their origins and molecular consequences remain obscure. We mapped breakpoint junctions of 54 SPAST CNVs at nucleotide resolution. Diverse combinations of exons are deleted or duplicated, highlighting the importance of particular exons for spastin function. Of the 54 CNVs, 38 (70%) appear to be mediated by an Alu-based mechanism, suggesting that the Alu-rich genomic architecture of SPAST renders this locus susceptible to various genome rearrangements. Analysis of breakpoint Alus further informs a model of Alu-mediated CNV formation characterized by small CNV size and potential involvement of mechanisms other than homologous recombination. Twelve deletions (22%) overlap part of SPAST and a portion of a nearby, directly oriented gene, predicting novel chimeric genes in these subjects' genomes. cDNA from a subject with a SPAST final exon deletion contained multiple SPAST:SLC30A6 fusion transcripts, indicating that SPAST CNVs can have transcriptional effects beyond the gene itself. SLC30A6 has been implicated in Alzheimer disease, so these fusion gene data could explain a report of spastic paraplegia and dementia cosegregating in a family with deletion of the final exon of SPAST. Our findings provide evidence that the Alu genomic architecture of SPAST predisposes to diverse CNV alleles with distinct transcriptional--and possibly phenotypic--consequences. Moreover, we provide further mechanistic insights into Alu-mediated copy-number change that are extendable to other loci.


Assuntos
Adenosina Trifosfatases/genética , Elementos Alu/genética , Proteínas de Transporte de Cátions/genética , Variações do Número de Cópias de DNA/genética , Paraplegia Espástica Hereditária/genética , Sequência de Bases , Linhagem Celular Transformada , Genótipo , Humanos , Isoformas de Proteínas/genética , Proteínas Recombinantes de Fusão/genética , Análise de Sequência de DNA , Deleção de Sequência , Espastina
2.
J Med Genet ; 52(2): 85-94, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25480986

RESUMO

BACKGROUND: Oliver-McFarlane syndrome is characterised by trichomegaly, congenital hypopituitarism and retinal degeneration with choroidal atrophy. Laurence-Moon syndrome presents similarly, though with progressive spinocerebellar ataxia and spastic paraplegia and without trichomegaly. Both recessively inherited disorders have no known genetic cause. METHODS: Whole-exome sequencing was performed to identify the genetic causes of these disorders. Mutations were functionally validated in zebrafish pnpla6 morphants. Embryonic expression was evaluated via in situ hybridisation in human embryonic sections. Human neurohistopathology was performed to characterise cerebellar degeneration. Enzymatic activities were measured in patient-derived fibroblast cell lines. RESULTS: Eight mutations in six families with Oliver-McFarlane or Laurence-Moon syndrome were identified in the PNPLA6 gene, which encodes neuropathy target esterase (NTE). PNPLA6 expression was found in the developing human eye, pituitary and brain. In zebrafish, the pnpla6 curly-tailed morphant phenotype was fully rescued by wild-type human PNPLA6 mRNA and not by mutation-harbouring mRNAs. NTE enzymatic activity was significantly reduced in fibroblast cells derived from individuals with Oliver-McFarlane syndrome. Intriguingly, adult brain histology from a patient with highly overlapping features of Oliver-McFarlane and Laurence-Moon syndromes revealed extensive cerebellar degeneration and atrophy. CONCLUSIONS: Previously, PNPLA6 mutations have been associated with spastic paraplegia type 39, Gordon-Holmes syndrome and Boucher-Neuhäuser syndromes. Discovery of these additional PNPLA6-opathies further elucidates a spectrum of neurodevelopmental and neurodegenerative disorders associated with NTE impairment and suggests a unifying mechanism with diagnostic and prognostic importance.


Assuntos
Blefaroptose/enzimologia , Blefaroptose/genética , Hidrolases de Éster Carboxílico/genética , Nanismo/enzimologia , Nanismo/genética , Predisposição Genética para Doença , Hipertricose/enzimologia , Hipertricose/genética , Deficiência Intelectual/enzimologia , Deficiência Intelectual/genética , Síndrome de Laurence-Moon/enzimologia , Síndrome de Laurence-Moon/genética , Retinose Pigmentar/enzimologia , Retinose Pigmentar/genética , Alelos , Sequência de Aminoácidos , Animais , Hidrolases de Éster Carboxílico/química , Sistema Nervoso Central/patologia , Deficiências do Desenvolvimento/enzimologia , Deficiências do Desenvolvimento/genética , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Dados de Sequência Molecular , Mutação/genética , Fenótipo , Fosfolipases/química , Fosfolipases/genética , Estrutura Terciária de Proteína , Retina/patologia , Peixe-Zebra/embriologia
3.
J Appl Toxicol ; 34(12): 1426-35, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24395470

RESUMO

Inhibition and aging of neuropathy target esterase (NTE) by neuropathic organophosphorus (OP) compounds triggers OP compound-induced delayed neuropathy (OPIDN), whereas inhibition of acetylcholinesterase (AChE) produces cholinergic toxicity. The neuropathic potential of an OP compound is defined by its relative inhibitory potency toward NTE vs. AChE assessed by enzyme assays following dosing in vivo or after incubations of direct-acting compounds or active metabolites with enzymes in vitro. The standard animal model of OPIDN is the adult hen, but its large size and high husbandry costs make this species a burdensome model for assessing neuropathic potential. Although the mouse does not readily exhibit clinical signs of OPIDN, it displays axonal lesions and expresses brain AChE and NTE. Therefore, the present research was performed as a further test of the hypothesis that inhibition of mouse brain AChE and NTE could be used to assess neuropathic potential using mouse brain preparations in vitro or employing mouse brain assays following dosing of OP compounds in vivo. Excellent correlations were obtained for inhibition kinetics in vitro of mouse brain enzymes vs. hen brain and human recombinant enzymes. Furthermore, inhibition of mouse brain AChE and NTE after dosing with OP compounds afforded ED(50) ratios that agreed with relative inhibitory potencies assessed in vitro. Taken together, results with mouse brain enzymes demonstrated consistent correspondence between in vitro and in vivo predictors of neuropathic potential, thus adding to previous studies supporting the validity of a mouse model for biochemical assessment of the ability of OP compounds to produce OPIDN.


Assuntos
Acetilcolinesterase/metabolismo , Hidrolases de Éster Carboxílico/antagonistas & inibidores , Modelos Animais de Doenças , Inibidores Enzimáticos/toxicidade , Síndromes Neurotóxicas/enzimologia , Compostos Organofosforados/toxicidade , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Galinhas , Relação Dose-Resposta a Droga , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL , Síndromes Neurotóxicas/etiologia , Especificidade da Espécie
4.
Hum Mutat ; 34(10): 1357-60, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23857908

RESUMO

We report here the genetic basis for a form of progressive hereditary spastic paraplegia (SPG43) previously described in two Malian sisters. Exome sequencing revealed a homozygous missense variant (c.187G>C; p.Ala63Pro) in C19orf12, a gene recently implicated in neurodegeneration with brain iron accumulation (NBIA). The same mutation was subsequently also found in a Brazilian family with features of NBIA, and we identified another NBIA patient with a three-nucleotide deletion (c.197_199del; p.Gly66del). Haplotype analysis revealed that the p.Ala63Pro mutations have a common origin, but MRI scans showed no brain iron deposition in the Malian SPG43 subjects. Heterologous expression of these SPG43 and NBIA variants resulted in similar alterations in the subcellular distribution of C19orf12. The SPG43 and NBIA variants reported here as well as the most common C19orf12 missense mutation reported in NBIA patients are found within a highly conserved, extended hydrophobic domain in C19orf12, underscoring the functional importance of this domain.


Assuntos
Proteínas Mitocondriais/genética , Mutação , Paraplegia Espástica Hereditária/diagnóstico , Paraplegia Espástica Hereditária/genética , Adolescente , Sequência de Aminoácidos , Encéfalo/metabolismo , Encéfalo/patologia , Homozigoto , Humanos , Espaço Intracelular/metabolismo , Imageamento por Ressonância Magnética , Masculino , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Dados de Sequência Molecular , Transporte Proteico , Alinhamento de Sequência , Deleção de Sequência , Paraplegia Espástica Hereditária/metabolismo
5.
Chem Biol Interact ; 203(1): 238-44, 2013 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-23220002

RESUMO

Neuropathy target esterase (NTE) was discovered by M.K. Johnson in his quest for the entity responsible for the striking and mysterious paralysis brought about by certain organophosphorus (OP) esters. His pioneering work on OP neuropathy led to the view that the biochemical lesion consisted of NTE that had undergone OP inhibition and aging. Indeed, nonaging NTE inhibitors failed to produce disease but protected against neuropathy from subsequently administered aging inhibitors. Thus, inhibition of NTE activity was not the culprit; rather, formation of an abnormal protein was the agent of the disorder. More recently, however, Paul Glynn and colleagues showed that whereas conventional knockout of the NTE gene was embryonic lethal, conditional knockout of central nervous system NTE produced neurodegeneration, suggesting to these authors that the absence of NTE rather than its presence in some altered form caused disease. We now know that NTE is the 6th member of a 9-protein family called patatin-like phospholipase domain-containing proteins, PNPLA1-9. Mutations in the catalytic domain of NTE (PNPLA6) are associated with a slowly developing disease akin to OP neuropathy and hereditary spastic paraplegia called NTE-related motor neuron disorder (NTE-MND). Furthermore, the NTE protein from affected individuals has altered enzymological characteristics. Moreover, closely related PNPLA7 is regulated by insulin and glucose. These seemingly disparate findings are not necessarily mutually exclusive, but we need to reconcile recent genetic findings with the historical body of toxicological data indicating that inhibition and aging of NTE are both necessary in order to produce neuropathy from exposure to certain OP compounds. Solving this mystery will be satisfying in itself, but it is also an enterprise likely to pay dividends by enhancing our understanding of the physiological and pathogenic roles of the PNPLA family of proteins in neurological health and disease, including a potential role for NTE in diabetic neuropathy.


Assuntos
Hidrolases de Éster Carboxílico , Animais , Hidrolases de Éster Carboxílico/antagonistas & inibidores , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/história , Domínio Catalítico/genética , Técnicas de Inativação de Genes , História do Século XX , História do Século XXI , Humanos , Doença dos Neurônios Motores/induzido quimicamente , Doença dos Neurônios Motores/enzimologia , Doença dos Neurônios Motores/história , Mutação , Síndromes Neurotóxicas/enzimologia , Síndromes Neurotóxicas/história , Intoxicação por Organofosfatos/enzimologia , Intoxicação por Organofosfatos/história , Compostos Organofosforados/química , Compostos Organofosforados/toxicidade , Relação Estrutura-Atividade
6.
Toxicol Lett ; 199(1): 1-5, 2010 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-20603202

RESUMO

Recently, we identified neuropathy target esterase (NTE) mutation as the cause of an autosomal recessive motor neuron disease (NTE-MND). Subsequently, we showed that NTE-MND mutations reduced specific activity (SA) and altered inhibitory kinetics of NTE catalytic domain constructs. Recent preliminary results showed that NTE is expressed in cultured human skin fibroblasts, and others have used mutant forms of neuronal proteins expressed in fibroblasts as biomarkers of neurogenetic diseases. Therefore, the present study was carried out to test the hypothesis that NTE in cultured skin fibroblasts from NTE-MND subjects also exhibit altered enzymological properties assessed by SA and IC(50) values of mipafox (MIP) and chlorpyrifos oxon (CPO). NTE SA was reduced to 65% of control (wild-type NTE from commercially obtained fibroblasts) in homozygous M1012V fibroblasts and 59-61% of control in compound heterozygous R890H/c2946_2947InsCAGC fibroblasts. MIP IC(50) values were unaffected by the NTE mutations, but the CPO IC(50) increased 4.5-fold in homozygous M1012V fibroblasts. Interestingly, markedly reduced NTE SAs (40-43% of control) were observed in fibroblasts from asymptomatic subjects heterozygous for NTE insertion c2946_2947InsCAGC. This insertion is predicted to produce truncated NTE missing the last 235 residues of its catalytic domain. These observations confirm that NTE-MND mutations reduce NTE SA in vitro. Moreover, to the extent observations made in cultured fibroblasts may be generalized to events in the nervous system, lack of correlation between reduced fibroblast NTE SA and the occurrence of NTE-MND in NTE insertion mutation heterozygotes indicates that reduction of NTE SA alone is insufficient to cause MND.


Assuntos
Hidrolases de Éster Carboxílico/genética , Fibroblastos/enzimologia , Doença dos Neurônios Motores/genética , Mutagênese Insercional , Hidrolases de Éster Carboxílico/metabolismo , Células Cultivadas , Análise Mutacional de DNA , Fibroblastos/patologia , Genótipo , Heterozigoto , Humanos , Doença dos Neurônios Motores/enzimologia , Doença dos Neurônios Motores/patologia
7.
Toxicol Lett ; 196(2): 67-73, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20382209

RESUMO

Neuropathy target esterase (NTE) is a phospholipase/lysophospholipase associated with organophosphorus (OP) compound-induced delayed neurotoxicity (OPIDN). Distal degeneration of motor axons occurs in both OPIDN and the hereditary spastic paraplegias (HSPs). Recently, mutations within the esterase domain of NTE were identified in patients with a novel type of HSP (SPG39) designated NTE-related motor neuron disease (NTE-MND). Two of these mutations, arginine 890 to histidine (R890H) and methionine 1012 to valine (M1012V), were created in human recombinant NTE catalytic domain (NEST) to measure possible changes in catalytic properties. These mutated enzymes had decreased specific activities for hydrolysis of the artificial substrate, phenyl valerate. In addition, the M1012V mutant exhibited a reduced bimolecular rate constant of inhibition (k(i)) for all three inhibitors tested: mipafox, diisopropylphosphorofluoridate, and chlorpyrifos oxon. Finally, while both mutated enzymes inhibited by OP compounds exhibited altered time-dependent loss of their ability to be reactivated by nucleophiles (aging), more pronounced effects were seen with the M1012V mutant. Taken together, the results from specific activity, inhibition, and aging experiments suggest that the mutations found in association with NTE-MND have functional correlates in altered enzymological properties of NTE.


Assuntos
Hidrolases de Éster Carboxílico/metabolismo , Doença dos Neurônios Motores/enzimologia , Paraplegia Espástica Hereditária/enzimologia , Hidrolases de Éster Carboxílico/antagonistas & inibidores , Hidrolases de Éster Carboxílico/química , Hidrolases de Éster Carboxílico/genética , Domínio Catalítico , Clorpirifos/análogos & derivados , Clorpirifos/farmacologia , Inibidores Enzimáticos/farmacologia , Humanos , Hidrólise , Isoflurofato/análogos & derivados , Isoflurofato/farmacologia , Cinética , Doença dos Neurônios Motores/genética , Mutagênese Sítio-Dirigida , Mutação , Proteínas Recombinantes/metabolismo , Paraplegia Espástica Hereditária/genética , Especificidade por Substrato , Valeratos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA