Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Plant Cell ; 35(10): 3845-3869, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37378592

RESUMO

Emerging evidence indicates that in addition to its well-recognized functions in antiviral RNA silencing, dsRNA elicits pattern-triggered immunity (PTI), likely contributing to plant resistance against virus infections. However, compared to bacterial and fungal elicitor-mediated PTI, the mode-of-action and signaling pathway of dsRNA-induced defense remain poorly characterized. Here, using multicolor in vivo imaging, analysis of GFP mobility, callose staining, and plasmodesmal marker lines in Arabidopsis thaliana and Nicotiana benthamiana, we show that dsRNA-induced PTI restricts the progression of virus infection by triggering callose deposition at plasmodesmata, thereby likely limiting the macromolecular transport through these cell-to-cell communication channels. The plasma membrane-resident SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE 1, the BOTRYTIS INDUCED KINASE1/AVRPPHB SUSCEPTIBLE1-LIKE KINASE1 kinase module, PLASMODESMATA-LOCATED PROTEINs 1/2/3, as well as CALMODULIN-LIKE 41 and Ca2+ signals are involved in the dsRNA-induced signaling leading to callose deposition at plasmodesmata and antiviral defense. Unlike the classical bacterial elicitor flagellin, dsRNA does not trigger a detectable reactive oxygen species (ROS) burst, substantiating the idea that different microbial patterns trigger partially shared immune signaling frameworks with distinct features. Likely as a counter strategy, viral movement proteins from different viruses suppress the dsRNA-induced host response leading to callose deposition to achieve infection. Thus, our data support a model in which plant immune signaling constrains virus movement by inducing callose deposition at plasmodesmata and reveals how viruses counteract this layer of immunity.

2.
New Phytol ; 238(3): 1115-1128, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36751904

RESUMO

Numerous plant endogenous mRNAs move via phloem and thus affect the growth and development of long-distant organs. mRNAs are transported with RNA-binding proteins forming a ribonucleoprotein complex. However, it remains elusive how such RNP complex assembles and facilitates mRNA trafficking. Protease digestion and RNA immunoprecipitation were used to investigate the RNP assembly function of the complete Chaperonin Containing T-complex Polypeptide-1. In situ hybridization, hairy root transformation, microprojectile bombardment, and grafting experiments demonstrate the role of CCT complex in the transport of a PbWoxT1-PbPTB3 RNP complex in Pyrus betulaefolia. PbCCT5 silenced caused defective movement of GFP-PbPTB3 and GFP-PbWoxT1 from hairy roots to new leaves via the phloem. PbCCT5 is shown to interact with PbPTB3. PbCCT complex enhanced PbPTB3 stabilization and permitted assembly of PbWoxT1 and PbPTB3 into an RNP complex. Furthermore, silencing of individual CCT subunits inhibited the intercellular movement of GFP-PbPTB3 and long-distance trafficking of PbWoxT1 and PbPTB3 in grafted plants. Taken together, the CCT complex assembles PbPTB3 and PbWoxT1 into an RNP complex in the phloem in order to facilitate the long-distance trafficking of PbWoxT1 in P. betulaefolia. This study therefore provides important insights into the mechanism of RNP complex formation and transport.


Assuntos
Pyrus , Chaperonina com TCP-1/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , Ribonucleoproteínas/metabolismo
3.
Plant J ; 105(1): 271-282, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33098198

RESUMO

RNA transport and localization represent important post-transcriptional mechanisms to determine the subcellular localization of protein synthesis. Plants have the capacity to transport messenger (m)RNA molecules beyond the cell boundaries through plasmodesmata and over long distances in the phloem. RNA viruses exploit these transport pathways to disseminate their infections and represent important model systems to investigate RNA transport in plants. Here, we present an in vivo plant RNA-labeling system based on the Escherichia coli RNA-binding protein BglG. Using the detection of RNA in mobile RNA particles formed by viral movement protein (MP) as a model, we demonstrate the efficiency and specificity of mRNA detection by the BglG system as compared with MS2 and λN systems. Our observations show that MP mRNA is specifically associated with MP in mobile MP particles but hardly with MP localized at plasmodesmata. MP mRNA is clearly absent from MP accumulating along microtubules. We show that the in vivo BglG labeling of the MP particles depends on the presence of the BglG-binding stem-loop aptamers within the MP mRNA and that the aptamers enhance the coprecipitation of BglG by MP, thus demonstrating the presence of an MP:MP mRNA complex. The BglG system also allowed us to monitor the cell-to-cell transport of the MP mRNA, thus linking the observation of mobile MP mRNA granules with intercellular MP mRNA transport. Given its specificity demonstrated here, the BglG system may be widely applicable for studying mRNA transport and localization in plants.


Assuntos
Proteínas de Bactérias , RNA Mensageiro/ultraestrutura , RNA de Plantas/ultraestrutura , Proteínas de Ligação a RNA , Escherichia coli , Proteínas de Escherichia coli , Proteínas de Fluorescência Verde , Imunoprecipitação , Microscopia de Fluorescência , Epiderme Vegetal/metabolismo , RNA Mensageiro/metabolismo , RNA de Plantas/metabolismo , Nicotiana/genética
4.
New Phytol ; 229(2): 1052-1066, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32866987

RESUMO

Plant viruses encode movement proteins (MPs) that ensure the transport of viral genomes through plasmodesmata (PD) and use cell endomembranes, mostly the endoplasmic reticulum (ER), for delivery of viral genomes to PD and formation of PD-anchored virus replication compartments. Here, we demonstrate that the Hibiscus green spot virus BMB2 MP, an integral ER protein, induces constrictions of ER tubules, decreases the mobility of ER luminal content, and exhibits an affinity to highly curved membranes. These properties are similar to those described for reticulons, cellular proteins that induce membrane curvature to shape the ER tubules. Similar to reticulons, BMB2 adopts a W-like topology within the ER membrane. BMB2 targets PD and increases their size exclusion limit, and these BMB2 activities correlate with the ability to induce constrictions of ER tubules. We propose that the induction of ER constrictions contributes to the BMB2-dependent increase in PD permeability and formation of the PD-associated replication compartments, therefore facilitating the virus intercellular spread. Furthermore, we show that the ER tubule constrictions also occur in cells expressing TGB2, one of the three MPs of Potato virus X (PVX), and in PVX-infected cells, suggesting that reticulon-like MPs are employed by diverse RNA viruses.


Assuntos
Proteínas do Movimento Viral em Plantas , Vírus de Plantas , Retículo Endoplasmático , Plasmodesmos , Nicotiana
5.
J Virol ; 92(21)2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30135122

RESUMO

Plant virus cell-to-cell movement is an essential step in viral infections. This process is facilitated by specific virus-encoded movement proteins (MPs), which manipulate the cell wall channels between neighboring cells known as plasmodesmata (PD). Citrus psorosis virus (CPsV) infection in sweet orange involves the formation of tubule-like structures within PD, suggesting that CPsV belongs to "tubule-forming" viruses that encode MPs able to assemble a hollow tubule extending between cells to allow virus movement. Consistent with this hypothesis, we show that the MP of CPsV (MPCPsV) indeed forms tubule-like structures at PD upon transient expression in Nicotiana benthamiana leaves. Tubule formation by MPCPsV depends on its cleavage capacity, mediated by a specific aspartic protease motif present in its primary sequence. A single amino acid mutation in this motif abolishes MPCPsV cleavage, alters the subcellular localization of the protein, and negatively affects its activity in facilitating virus movement. The amino-terminal 34-kDa cleavage product (34KCPsV), but not the 20-kDa fragment (20KCPsV), supports virus movement. Moreover, similar to tubule-forming MPs of other viruses, MPCPsV (and also the 34KCPsV cleavage product) can homooligomerize, interact with PD-located protein 1 (PDLP1), and assemble tubule-like structures at PD by a mechanism dependent on the secretory pathway. 20KCPsV retains the protease activity and is able to cleave a cleavage-deficient MPCPsV in trans Altogether, these results demonstrate that CPsV movement depends on the autolytic cleavage of MPCPsV by an aspartic protease activity, which removes the 20KCPsV protease and thereby releases the 34KCPsV protein for PDLP1-dependent tubule formation at PD.IMPORTANCE Infection by citrus psorosis virus (CPsV) involves a self-cleaving aspartic protease activity within the viral movement protein (MP), which results in the production of two peptides, termed 34KCPsV and 20KCPsV, that carry the MP and viral protease activities, respectively. The underlying protease motif within the MP is also found in the MPs of other members of the Aspiviridae family, suggesting that protease-mediated protein processing represents a conserved mechanism of protein expression in this virus family. The results also demonstrate that CPsV and potentially other ophioviruses move by a tubule-guided mechanism. Although several viruses from different genera were shown to use this mechanism for cell-to-cell movement, our results also demonstrate that this mechanism is controlled by posttranslational protein cleavage. Moreover, given that tubule formation and virus movement could be inhibited by a mutation in the protease motif, targeting the protease activity for inactivation could represent an important approach for ophiovirus control.


Assuntos
Ácido Aspártico Proteases/metabolismo , Citrus sinensis/virologia , Nicotiana/virologia , Proteínas do Movimento Viral em Plantas/metabolismo , Vírus de Plantas/crescimento & desenvolvimento , Plasmodesmos/fisiologia , Aminoácidos/genética , Ácido Aspártico Proteases/genética , Microscopia Eletrônica de Transmissão , Doenças das Plantas/virologia , Folhas de Planta/virologia , Proteínas do Movimento Viral em Plantas/genética , Vírus de Plantas/genética , Plasmodesmos/genética , Plasmodesmos/virologia
6.
Virologie (Montrouge) ; 28(3)2024 Apr 12.
Artigo em Francês | MEDLINE | ID: mdl-38607293
7.
Virologie (Montrouge) ; 28(3)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38607304
8.
Plant Biotechnol J ; 2018 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-29479789

RESUMO

Pathogens induce severe damages on cultivated plants and represent a serious threat to global food security. Emerging strategies for crop protection involve the external treatment of plants with double-stranded (ds)RNA to trigger RNA interference. However, applying this technology in greenhouses and fields depends on dsRNA quality, stability and efficient large-scale production. Using components of the bacteriophage phi6, we engineered a stable and accurate in vivo dsRNA production system in Pseudomonas syringae bacteria. Unlike other in vitro or in vivo dsRNA production systems that rely on DNA transcription and postsynthetic alignment of single-stranded RNA molecules, the phi6 system is based on the replication of dsRNA by an RNA-dependent RNA polymerase, thus allowing production of high-quality, long dsRNA molecules. The phi6 replication complex was reprogrammed to multiply dsRNA sequences homologous to tobacco mosaic virus (TMV) by replacing the coding regions within two of the three phi6 genome segments with TMV sequences and introduction of these constructs into P. syringae together with the third phi6 segment, which encodes the components of the phi6 replication complex. The stable production of TMV dsRNA was achieved by combining all the three phi6 genome segments and by maintaining the natural dsRNA sizes and sequence elements required for efficient replication and packaging of the segments. The produced TMV-derived dsRNAs inhibited TMV propagation when applied to infected Nicotiana benthamiana plants. The established dsRNA production system enables the broad application of dsRNA molecules as an efficient, highly flexible, nontransgenic and environmentally friendly approach for protecting crops against viruses and other pathogens.

9.
J Gen Virol ; 98(9): 2379-2391, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28869000

RESUMO

The cell-to-cell transport of many plant viruses through plasmodesmata requires viral movement proteins (MPs) encoded by a 'triple gene block' (TGB) and termed TGB1, TGB2 and TGB3. TGB3 is a small integral membrane protein that contains subcellular targeting signals and directs both TGB2 and the helicase domain-containing TGB1 protein to plasmodesmata-associated structures. Recently, we described a 'binary movement block' (BMB) coding for two MPs, BMB1 and BMB2. The BMB2 protein associates with endoplasmic reticulum (ER) membranes, accumulates at plasmodesmata-associated membrane bodies and directs the BMB1 helicase to these structures. TGB3 transport to cell peripheral bodies was previously shown to bypass the secretory pathway and involve a non-conventional mechanism. Here, we provide evidence that the intracellular transport of both poa semilatent virus TGB3 and hibiscus green spot virus BMB2 to plasmodesmata-associated sites can occur via lateral translocation along the ER membranes. Agrobacterium-mediated transient co-expression in Nicotiana benthamiana leaves revealed that green fluorescent protein (GFP)-fused actin-binding domains of Arabidopsis fimbrin (ABD2-GFP) and mouse talin (TAL-GFP) inhibited the subcellular targeting of TGB3 and BMB2 to plasmodesmata-associated bodies, which resulted in TGB3 and BMB2 accumulation in the cytoplasm in association with aberrant ER structures. Inhibition of COPII budding complex formation by the expression of a dominant-negative mutant of the small GTPase Sar1 had no detectable effect on BMB2 subcellular targeting, which therefore could occur without exit from the ER in COPII transport vesicles. Collectively, the presented data support the current view that plant viral MPs exploit the ER:actin network for their intracellular transport.


Assuntos
Proteínas do Movimento Viral em Plantas/metabolismo , Vírus de Plantas/metabolismo , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/virologia , Doenças das Plantas/virologia , Proteínas do Movimento Viral em Plantas/genética , Vírus de Plantas/genética , Transporte Proteico , Nicotiana/virologia
10.
J Cell Sci ; 128(11): 2033-46, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25908862

RESUMO

The preprophase band of microtubules performs the crucial function of marking the plane of cell division. Although the preprophase band depolymerises at the onset of mitosis, the division plane is 'memorized' by a cortical division zone to which the phragmoplast is attracted during cytokinesis. Proteins have been discovered that are part of the molecular memory but little is known about how they contribute to phragmoplast guidance. Previously, we found that the microtubule-associated protein AIR9 is found in the cortical division zone at preprophase and returns during cell plate insertion but is absent from the cortex during the intervening mitosis. To identify new components of the preprophase memory, we searched for proteins that interact with AIR9. We detected the kinesin-like calmodulin-binding protein, KCBP, which can be visualized at the predicted cortical site throughout division. A truncation study of KCBP indicates that its MyTH4-FERM domain is required for linking the motor domain to the cortex. These results suggest a mechanism by which minus-end-directed KCBP helps guide the centrifugally expanding phragmoplast to the cortical division site.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Ligação a Calmodulina/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Mitose/fisiologia , Cinesinas/metabolismo , Microtúbulos/metabolismo
11.
J Exp Bot ; 69(1): 117-132, 2017 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-29036578

RESUMO

The infection of plants by viruses depends on cellular mechanisms that support the replication of the viral genomes, and the cell-to-cell and systemic movement of the virus via plasmodesmata (PD) and the connected phloem. While the propagation of some viruses requires the conventional endoplasmic reticulum (ER)-Golgi pathway, others replicate and spread between cells in association with the ER and are independent of this pathway. Using selected viruses as examples, this review re-examines the involvement of membranes and the cytoskeleton during virus infection and proposes potential roles of class VIII myosins and membrane-tethering proteins in controlling viral functions at specific ER subdomains, such as cortical microtubule-associated ER sites, ER-plasma membrane contact sites, and PD.


Assuntos
Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Miosinas/metabolismo , Doenças das Plantas/virologia , Proteínas de Plantas/metabolismo , Vírus de Plantas/fisiologia , Replicação Viral , Retículo Endoplasmático/metabolismo , Microtúbulos/metabolismo , Plantas/metabolismo , Plantas/virologia , Plasmodesmos/metabolismo
12.
PLoS Pathog ; 10(10): e1004448, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25329993

RESUMO

Viruses are obligatory parasites that depend on host cellular factors for their replication as well as for their local and systemic movement to establish infection. Although myosin motors are thought to contribute to plant virus infection, their exact roles in the specific infection steps have not been addressed. Here we investigated the replication, cell-to-cell and systemic spread of Tobacco mosaic virus (TMV) using dominant negative inhibition of myosin activity. We found that interference with the functions of three class VIII myosins and two class XI myosins significantly reduced the local and long-distance transport of the virus. We further determined that the inactivation of myosins XI-2 and XI-K affected the structure and dynamic behavior of the ER leading to aggregation of the viral movement protein (MP) and to a delay in the MP accumulation in plasmodesmata (PD). The inactivation of myosin XI-2 but not of myosin XI-K affected the localization pattern of the 126k replicase subunit and the level of TMV accumulation. The inhibition of myosins VIII-1, VIII-2 and VIII-B abolished MP localization to PD and caused its retention at the plasma membrane. These results suggest that class XI myosins contribute to the viral propagation and intracellular trafficking, whereas myosins VIII are specifically required for the MP targeting to and virus movement through the PD. Thus, TMV appears to recruit distinct myosins for different steps in the cell-to-cell spread of the infection.


Assuntos
Miosinas/metabolismo , Nicotiana/virologia , Proteínas do Movimento Viral em Plantas/metabolismo , Plasmodesmos/virologia , Vírus do Mosaico do Tabaco , Plasmodesmos/metabolismo , Vírus do Mosaico do Tabaco/fisiologia , Replicação Viral/fisiologia
13.
New Phytol ; 211(3): 1008-19, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27030513

RESUMO

Pattern-triggered immunity (PTI) is a plant defense response that relies on the perception of conserved microbe- or pathogen-associated molecular patterns (MAMPs or PAMPs, respectively). Recently, it has been recognized that PTI restricts virus infection in plants; however, the nature of the viral or infection-induced PTI elicitors and the underlying signaling pathways are still unknown. As double-stranded RNAs (dsRNAs) are conserved molecular patterns associated with virus replication, we applied dsRNAs or synthetic dsRNA analogs to Arabidopsis thaliana and investigated PTI responses. We show that in vitro-generated dsRNAs, dsRNAs purified from virus-infected plants and the dsRNA analog polyinosinic-polycytidylic acid (poly(I:C)) induce typical PTI responses dependent on the co-receptor SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE 1 (SERK1), but independent of dicer-like (DCL) proteins in Arabidopsis. Moreover, dsRNA treatment of Arabidopsis induces SERK1-dependent antiviral resistance. Screening of Arabidopsis wild accessions demonstrates natural variability in dsRNA sensitivity. Our findings suggest that dsRNAs represent genuine PAMPs in plants, which induce a signaling cascade involving SERK1 and a specific dsRNA receptor. The dependence of dsRNA-mediated PTI on SERK1, but not on DCLs, implies that dsRNA-mediated PTI involves membrane-associated processes and operates independently of RNA silencing. dsRNA sensitivity may represent a useful trait to increase antiviral resistance in cultivated plants.


Assuntos
Arabidopsis/imunologia , Moléculas com Motivos Associados a Patógenos/metabolismo , Imunidade Vegetal , RNA de Cadeia Dupla/metabolismo , Transdução de Sinais , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/virologia , Proteínas de Arabidopsis/metabolismo , Ecótipo , Flagelina/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Mutação/genética , Doenças das Plantas/virologia , Imunidade Vegetal/efeitos dos fármacos , Imunidade Vegetal/genética , Vírus de Plantas/efeitos dos fármacos , Vírus de Plantas/fisiologia , Poli I-C/farmacologia , Transdução de Sinais/efeitos dos fármacos
14.
Plant J ; 75(2): 290-308, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23379770

RESUMO

Viruses use and subvert host cell mechanisms to support their replication and spread between cells, tissues and organisms. Microtubules and associated motor proteins play important roles in these processes in animal systems, and may also play a role in plants. Although transport processes in plants are mostly actin based, studies, in particular with Tobacco mosaic virus (TMV) and its movement protein (MP), indicate direct or indirect roles of microtubules in the cell-to-cell spread of infection. Detailed observations suggest that microtubules participate in the cortical anchorage of viral replication complexes, in guiding their trafficking along the endoplasmic reticulum (ER)/actin network, and also in developing the complexes into virus factories. Microtubules also play a role in the plant-to-plant transmission of Cauliflower mosaic virus (CaMV) by assisting in the development of specific virus-induced inclusions that facilitate viral uptake by aphids. The involvement of microtubules in the formation of virus factories and of other virus-induced inclusions suggests the existence of aggresomal pathways by which plant cells recruit membranes and proteins into localized macromolecular assemblies. Although studies related to the involvement of microtubules in the interaction of viruses with plants focus on specific virus models, a number of observations with other virus species suggest that microtubules may have a widespread role in viral pathogenesis.


Assuntos
Microtúbulos/virologia , Vírus de Plantas/fisiologia , Replicação Viral , Animais , Caulimovirus/fisiologia , Citoesqueleto/virologia , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/virologia , Insetos/virologia , Doenças das Plantas/virologia , Proteínas do Movimento Viral em Plantas/metabolismo , Vírus de Plantas/patogenicidade , Vírus do Mosaico do Tabaco/patogenicidade , Vírus do Mosaico do Tabaco/fisiologia
15.
J Proteome Res ; 12(6): 2491-503, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-23594257

RESUMO

Plants are continuously exposed to changing environmental conditions and must, as sessile organisms, possess sophisticated acclimative mechanisms. To gain insight into systemic responses to local virus infection or wounding, we performed comparative LC-MS/MS protein profiling of distal, virus-free leaves four and five days after local inoculation of Arabidopsis thaliana plants with either Oilseed rape mosaic virus (ORMV) or inoculation buffer alone. Our study revealed biomarkers for systemic signaling in response to wounding and compatible virus infection in Arabidopsis, which should prove useful in further addressing the trigger-specific systemic response network and the elusive systemic signals. We observed responses common to ORMV and mock treatment as well as protein profile changes that are specific to local virus infection or mechanical wounding (mock treatment) alone, which provides evidence for the existence of more than one systemic signal to induce these distinct changes. Comparison of the systemic responses between time points indicated that the responses build up over time. Our data indicate stress-specific changes in proteins involved in jasmonic and abscisic acid signaling, intracellular transport, compartmentalization of enzyme activities, protein folding and synthesis, and energy and carbohydrate metabolism. In addition, a virus-triggered systemic signal appears to suppress antiviral host defense.


Assuntos
Proteínas de Arabidopsis/isolamento & purificação , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/genética , Folhas de Planta/genética , Arabidopsis/imunologia , Arabidopsis/virologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/imunologia , Cromatografia Líquida , Perfilação da Expressão Gênica , Anotação de Sequência Molecular , Doenças das Plantas/imunologia , Doenças das Plantas/virologia , Folhas de Planta/imunologia , Folhas de Planta/virologia , Proteômica , Transdução de Sinais , Espectrometria de Massas em Tandem , Tobamovirus/imunologia
16.
Mol Plant Microbe Interact ; 26(11): 1271-80, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23902263

RESUMO

The plant's innate immune system detects potential biotic threats through recognition of microbe-associated molecular patterns (MAMPs) or danger-associated molecular patterns (DAMPs) by pattern recognition receptors (PRR). A central regulator of pattern-triggered immunity (PTI) is the BRI1-associated kinase 1 (BAK1), which undergoes complex formation with PRR upon ligand binding. Although viral patterns inducing PTI are well known from animal systems, nothing similar has been reported for plants. Rather, antiviral defense in plants is thought to be mediated by post-transcriptional gene silencing of viral RNA or through effector-triggered immunity, i.e., recognition of virus-specific effectors by resistance proteins. Nevertheless, infection by compatible viruses can also lead to the induction of defense gene expression, indicating that plants may also recognize viruses through PTI. Here, we show that PTI, or at least the presence of the regulator BAK1, is important for antiviral defense of Arabidopsis plants. Arabidopsis bak1 mutants show increased susceptibility to three different RNA viruses during compatible interactions. Furthermore, crude viral extracts but not purified virions induce several PTI marker responses in a BAK1-dependent manner. Overall, we conclude that BAK1-dependent PTI contributes to antiviral resistance in plants.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/enzimologia , Doenças das Plantas/imunologia , Imunidade Vegetal , Proteínas Serina-Treonina Quinases/genética , Vírus de RNA/fisiologia , Arabidopsis/genética , Arabidopsis/imunologia , Proteínas de Arabidopsis/imunologia , Proteínas de Arabidopsis/metabolismo , Etilenos/metabolismo , Interações Hospedeiro-Patógeno , Mutação , Doenças das Plantas/virologia , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas , Vírus de Plantas/isolamento & purificação , Vírus de Plantas/fisiologia , Ligação Proteica , Proteínas Serina-Treonina Quinases/imunologia , Proteínas Serina-Treonina Quinases/metabolismo , Interferência de RNA , Vírus de RNA/isolamento & purificação , RNA Viral/genética , Receptores de Reconhecimento de Padrão/genética , Receptores de Reconhecimento de Padrão/imunologia , Receptores de Reconhecimento de Padrão/metabolismo , Plântula , Transdução de Sinais , Vírion/isolamento & purificação , Vírion/fisiologia
17.
Plant Physiol ; 160(4): 2093-108, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23027663

RESUMO

Like many other viruses, Tobacco mosaic virus replicates in association with the endoplasmic reticulum (ER) and exploits this membrane network for intercellular spread through plasmodesmata (PD), a process depending on virus-encoded movement protein (MP). The movement process involves interactions of MP with the ER and the cytoskeleton as well as its targeting to PD. Later in the infection cycle, the MP further accumulates and localizes to ER-associated inclusions, the viral factories, and along microtubules before it is finally degraded. Although these patterns of MP accumulation have been described in great detail, the underlying mechanisms that control MP fate and function during infection are not known. Here, we identify CELL-DIVISION-CYCLE protein48 (CDC48), a conserved chaperone controlling protein fate in yeast (Saccharomyces cerevisiae) and animal cells by extracting protein substrates from membranes or complexes, as a cellular factor regulating MP accumulation patterns in plant cells. We demonstrate that Arabidopsis (Arabidopsis thaliana) CDC48 is induced upon infection, interacts with MP in ER inclusions dependent on the MP N terminus, and promotes degradation of the protein. We further provide evidence that CDC48 extracts MP from ER inclusions to the cytosol, where it subsequently accumulates on and stabilizes microtubules. We show that virus movement is impaired upon overexpression of CDC48, suggesting that CDC48 further functions in controlling virus movement by removal of MP from the ER transport pathway and by promoting interference of MP with microtubule dynamics. CDC48 acts also in response to other proteins expressed in the ER, thus suggesting a general role of CDC48 in ER membrane maintenance upon ER stress.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/virologia , Proteínas de Ciclo Celular/metabolismo , Proteínas do Movimento Viral em Plantas/metabolismo , Vírus do Mosaico do Tabaco/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Biomarcadores/metabolismo , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Proteínas de Fluorescência Verde/metabolismo , Corpos de Inclusão/metabolismo , Doenças das Plantas/virologia , Ligação Proteica , Transporte Proteico , Proteólise , Proteínas Recombinantes de Fusão/metabolismo , Frações Subcelulares/metabolismo , Nicotiana/virologia
18.
Chembiochem ; 13(8): 1206-13, 2012 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-22549874

RESUMO

The design, preparation and characterisation of a library of malachite green (MG) derivatives for two-photon RNA labelling is described. Some of these MG derivatives exhibit an increased affinity for an MG-aptamer, as well as improved two-photon sensitivity when compared to the classical malachite green chloride. The underlying mechanisms and potential benefits for in vivo RNA visualisation are discussed.


Assuntos
RNA/análise , Corantes de Rosanilina/química , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/química , Humanos , Cinética , Fótons , RNA/química , RNA/metabolismo , Corantes de Rosanilina/síntese química , Corantes de Rosanilina/toxicidade , Espectrometria de Fluorescência/métodos
19.
PLoS Pathog ; 6(9): e1001119, 2010 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-20886105

RESUMO

Plasmodesmata (PD) are essential but poorly understood structures in plant cell walls that provide symplastic continuity and intercellular communication pathways between adjacent cells and thus play fundamental roles in development and pathogenesis. Viruses encode movement proteins (MPs) that modify these tightly regulated pores to facilitate their spread from cell to cell. The most striking of these modifications is observed for groups of viruses whose MPs form tubules that assemble in PDs and through which virions are transported to neighbouring cells. The nature of the molecular interactions between viral MPs and PD components and their role in viral movement has remained essentially unknown. Here, we show that the family of PD-located proteins (PDLPs) promotes the movement of viruses that use tubule-guided movement by interacting redundantly with tubule-forming MPs within PDs. Genetic disruption of this interaction leads to reduced tubule formation, delayed infection and attenuated symptoms. Our results implicate PDLPs as PD proteins with receptor-like properties involved the assembly of viral MPs into tubules to promote viral movement.


Assuntos
Doenças das Plantas/virologia , Proteínas do Movimento Viral em Plantas/metabolismo , Vírus de Plantas/fisiologia , Plasmodesmos/metabolismo , Plasmodesmos/virologia , Receptores de Superfície Celular/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Arabidopsis/virologia , Comunicação Celular , Parede Celular/metabolismo , Chenopodium quinoa/crescimento & desenvolvimento , Chenopodium quinoa/metabolismo , Chenopodium quinoa/virologia , Immunoblotting , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Folhas de Planta/virologia , Transporte Proteico , RNA Viral/genética , Nicotiana/crescimento & desenvolvimento , Nicotiana/metabolismo , Nicotiana/virologia
20.
Methods Mol Biol ; 2457: 23-54, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35349131

RESUMO

Plasmodesmata (PD) are gated plant cell wall channels that allow the trafficking of molecules between cells and play important roles during plant development and in the orchestration of cellular and systemic signaling responses during interactions of plants with the biotic and abiotic environment. To allow gating, PD are equipped with signaling platforms and enzymes that regulate the size exclusion limit (SEL) of the pore. Plant-interacting microbes and viruses target PD with specific effectors to enhance their virulence and are useful probes to study PD functions.


Assuntos
Plasmodesmos , Vírus , Desenvolvimento Vegetal , Plantas , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA