Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Vaccine ; 42(9): 2181-2190, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38458870

RESUMO

A central goal of vaccine research is to characterize and validate immune correlates of protection (CoPs). In addition to helping elucidate immunological mechanisms, a CoP can serve as a valid surrogate endpoint for an infectious disease clinical outcome and thus qualifies as a primary endpoint for vaccine authorization or approval without requiring resource-intensive randomized, controlled phase 3 trials. Yet, it is challenging to persuasively validate a CoP, because a prognostic immune marker can fail as a reliable basis for predicting/inferring the level of vaccine efficacy against a clinical outcome, and because the statistical analysis of phase 3 trials only has limited capacity to disentangle association from cause. Moreover, the multitude of statistical methods garnered for CoP evaluation in phase 3 trials renders the comparison, interpretation, and synthesis of CoP results challenging. Toward promoting broader harmonization and standardization of CoP evaluation, this article summarizes four complementary statistical frameworks for evaluating CoPs in a phase 3 trial, focusing on the frameworks' distinct scientific objectives as measured and communicated by distinct causal vaccine efficacy parameters. Advantages and disadvantages of the frameworks are considered, dependent on phase 3 trial context, and perspectives are offered on how the frameworks can be applied and their results synthesized.


Assuntos
Eficácia de Vacinas , Vacinas , Projetos de Pesquisa , Biomarcadores/análise , Causalidade , Ensaios Clínicos Controlados Aleatórios como Assunto
2.
bioRxiv ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38464202

RESUMO

Understanding the causal genetic architecture of complex phenotypes is essential for future research into disease mechanisms and potential therapies. Here, we present a novel framework for genome-wide detection of sets of variants that carry non-redundant information on the phenotypes and are therefore more likely to be causal in a biological sense. Crucially, our framework requires only summary statistics obtained from standard genome-wide marginal association testing. The described approach, implemented in open-source software, is also computationally efficient, requiring less than 15 minutes on a single CPU to perform genome-wide analysis. Through extensive genome-wide simulation studies, we show that the method can substantially outperform usual two-stage marginal association testing and fine-mapping procedures in precision and recall. In applications to a meta-analysis of ten large-scale genetic studies of Alzheimer's disease (AD), we identified 82 loci associated with AD, including 37 additional loci missed by conventional GWAS pipeline. The identified putative causal variants achieve state-of-the-art agreement with massively parallel reporter assays and CRISPR-Cas9 experiments. Additionally, we applied the method to a retrospective analysis of 67 large-scale GWAS summary statistics since 2013 for a variety of phenotypes. Results reveal the method's capacity to robustly discover additional loci for polygenic traits and pinpoint potential causal variants underpinning each locus beyond conventional GWAS pipeline, contributing to a deeper understanding of complex genetic architectures in post-GWAS analyses.

3.
medRxiv ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39040190

RESUMO

Background: Post-acute sequelae of SARS-CoV-2, referred to as "long COVID", are a globally pervasive threat. While their many clinical determinants are commonly considered, their plausible social correlates are often overlooked. Methods: Here, we use data from a multinational prospective cohort study to compare social and clinical predictors of differences in quality of life with long COVID. We further measure the extent to which clinical intermediates may explain relationships between social variables and quality of life with long COVID. Findings: Beyond age, neuropsychological and rheumatological comorbidities, educational attainment, employment status, and female sex were important predictors of long COVID-associated quality of life days (long COVID QALDs). Furthermore, most of their associations could not be attributed to key long COVID-predicting comorbidities. In Norway, 90% (95% CI: 77%, 100%) of the adjusted association between belonging to the top two quintiles of educational attainment and long COVID QALDs was not explained by these clinical intermediates. The same was true for 86% (73%, 100%) and 93% (80%,100%) of the adjusted association between full-time employment and long COVID QALDs in the United Kingdom (UK) and Russia. Additionally, 77% (46%,100%) and 73% (52%, 94%) of the adjusted associations between female sex and long COVID QALDs in Norway and the UK were unexplained by the clinical mediators. Interpretation: Our findings highlight that socio-economic proxies and sex are key predictors of long COVID QALDs and that other (non-clinical) mechanisms drive their observed relationships. Importantly, we outline a multi-method, adaptable causal approach for evaluating the isolated contributions of social disparities to experiences with long COVID. Funding: UK Foreign, Commonwealth and Development Office; Wellcome Trust; Bill & Melinda Gates Foundation; Oxford COVID-19 Research Response Funding; UK National Institute for Health and Care Research; UK Medical Research Council; Public Health England; Liverpool Experimental Cancer Medicine Centre; Research Council of Norway; Vivaldi Invest A/S; South Eastern Norway Health Authority.

4.
Lancet Infect Dis ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38723650

RESUMO

BACKGROUND: The first licensed malaria vaccine, RTS,S/AS01E, confers moderate protection against symptomatic disease. Because many malaria infections are asymptomatic, we conducted a large-scale longitudinal parasite genotyping study of samples from a clinical trial exploring how vaccine dosing regimen affects vaccine efficacy. METHODS: Between Sept 28, 2017, and Sept 25, 2018, 1500 children aged 5-17 months were randomly assigned (1:1:1:1:1) to receive four different RTS,S/AS01E regimens or a rabies control vaccine in a phase 2b open-label clinical trial in Ghana and Kenya. Participants in the four RTS,S groups received two full doses at month 0 and month 1 and either full doses at month 2 and month 20 (group R012-20); full doses at month 2, month 14, month 26, and month 38 (group R012-14); fractional doses at month 2, month 14, month 26, and month 38 (group Fx012-14; early fourth dose); or fractional doses at month 7, month 20, and month 32 (group Fx017-20; delayed third dose). We evaluated the time to the first new genotypically detected infection and the total number of new infections during two follow-up periods (12 months and 20 months) in more than 36 000 dried blood spot specimens from 1500 participants. To study vaccine effects on time to the first new infection, we defined vaccine efficacy as one minus the hazard ratio (HR; RTS,S vs control) of the first new infection. We performed a post-hoc analysis of vaccine efficacy based on malaria infection status at first vaccination and force of infection by month 2. This trial (MAL-095) is registered with ClinicalTrials.gov, NCT03281291. FINDINGS: We observed significant and similar vaccine efficacy (25-43%; 95% CI union 9-53) against first new infection for all four RTS,S/AS01E regimens across both follow-up periods (12 months and 20 months). Each RTS,S/AS01E regimen significantly reduced the mean number of new infections in the 20-month follow-up period by 1·1-1·6 infections (95% CI union 0·6-2·1). Vaccine efficacy against first new infection was significantly higher in participants who were infected with malaria (68%; 95% CI 50-80) than in those who were uninfected (37%; 23-48) at the first vaccination (p=0·0053). INTERPRETATION: All tested dosing regimens blocked some infections to a similar degree. Improved vaccine efficacy in participants infected during vaccination could suggest new strategies for highly efficacious malaria vaccine development and implementation. FUNDING: GlaxoSmithKline Biologicals SA, PATH, Bill & Melinda Gates Foundation, and the German Federal Ministry of Education and Research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA