RESUMO
Pain is considered a multidimensional experience that embodies not merely sensation, but also emotion and perception. As is appropriate for this complexity, pain is represented and processed by an extensive matrix of cortical and subcortical structures. Of these structures, the cerebellum is gaining increasing attention. Although association between the cerebellum and both acute and chronic pain have been extensively detailed in electrophysiological and neuroimaging studies, a deep understanding of what functions are mediated by these associations is lacking. Nevertheless, the available evidence implies that lobules IV-VI and Crus I are especially pertinent to pain processing, and anatomical studies reveal that these regions connect with higher-order structures of sensorimotor, emotional, and cognitive function. Therefore, we speculate that the cerebellum exerts a modulatory role in pain via its communication with sites of sensorimotor, executive, reward, and limbic function. On this basis, in this review, we propose numerous ways in which the cerebellum might contribute to both acute and chronic pain, drawing particular attention to emotional and cognitive elements of pain. In addition, we emphasise the importance of advancing our knowledge about the relationship between the cerebellum and pain by discussing novel therapeutic opportunities that capitalize on this association.
Assuntos
Cerebelo , Dor , Humanos , Cerebelo/fisiopatologia , Cerebelo/diagnóstico por imagem , Animais , Dor/fisiopatologia , Dor/psicologia , Emoções/fisiologiaRESUMO
We recently showed that transcranial alternating current stimulation of the dorsolateral prefrontal cortex modulates spontaneous bursts of muscle sympathetic nerve activity, heart rate, and blood pressure (Sesa-Ashton G, Wong R, McCarthy B, Datta S, Henderson LA, Dawood T, Macefield VG. Stimulation of the dorsolateral prefrontal cortex modulates muscle sympathetic nerve activity and blood pressure in humans. Cereb Cortex Comm. 2022:3:2tgac017.). Stimulation was delivered between scalp electrodes placed over the nasion and electroencephalogram (EEG) electrode site F3 (left dorsolateral prefrontal cortex) or F4 (right dorsolateral prefrontal cortex), and therefore the current passed within the anatomical locations underlying the left and right ventromedial prefrontal cortices. Accordingly, we tested the hypothesis that stimulation of the left and right ventromedial prefrontal cortices would also modulate muscle sympathetic nerve activity, although we predicted that this would be weaker than that seen during dorsolateral prefrontal cortex stimulation. We further tested whether stimulation of the right ventromedial prefrontal cortices would cause greater modulation of muscle sympathetic nerve activity, than stimulation of the left ventromedial prefrontal cortices. In 11 individuals, muscle sympathetic nerve activity was recorded via microelectrodes inserted into the right common peroneal nerve, together with continuous blood pressure, electrocardiogram, and respiration. Stimulation was achieved using transcranial alternating current stimulation, +2 to -2 mA, 0.08 Hz, 100 cycles, applied between electrodes placed over the nasion, and EEG electrode site FP1, (left ventromedial prefrontal cortices) or FP2 (right ventromedial prefrontal cortices); for comparison, stimulation was also applied over F4 (right dorsolateral prefrontal cortex). Stimulation of all three cortical sites caused partial entrainment of muscle sympathetic nerve activity to the sinusoidal stimulation, together with modulation of blood pressure and heart rate. We found a significant fall in mean blood pressure of ~6 mmHg (P = 0.039) during stimulation of the left ventromedial prefrontal cortices, as compared with stimulation of the right. We have shown, for the first time, that transcranial alternating current stimulation of the ventromedial prefrontal cortices modulates muscle sympathetic nerve activity and blood pressure in awake humans at rest. However, it is unclear if this modulation occurred through the same brain pathways activated during transcranial alternating current stimulation of the dorsolateral prefrontal cortex.
Assuntos
Córtex Pré-Frontal , Estimulação Transcraniana por Corrente Contínua , Humanos , Pressão Sanguínea/fisiologia , Córtex Pré-Frontal/fisiologia , Encéfalo , Estimulação Elétrica , MúsculosRESUMO
Skin sympathetic nerve activity (SSNA) is primarily involved in thermoregulation and emotional expression; however, the brain regions involved in the generation of SSNA are not completely understood. In recent years, our laboratory has shown that blood-oxygen-level-dependent signal intensity in the ventromedial prefrontal cortex (vmPFC) and dorsolateral prefrontal cortex (dlPFC) are positively correlated with bursts of SSNA during emotional arousal and increases in signal intensity in the vmPFC occurring with increases in spontaneous bursts of SSNA even in the resting state. We have recently shown that unilateral transcranial alternating current stimulation (tACS) of the dlPFC causes modulation of SSNA but given that the current was delivered between electrodes over the dlPFC and the nasion, it is possible that the effects were due to current acting on the vmPFC. To test this, we delivered tACS to target the right vmPFC or dlPFC and nasion and recorded SSNA in 11 healthy participants by inserting a tungsten microelectrode into the right common peroneal nerve. The similarity in SSNA modulation between ipsilateral vmPFC and dlPFC suggests that the ipsilateral vmPFC, rather than the dlPFC, may be causing the modulation of SSNA during ipsilateral dlPFC stimulation.
Assuntos
Córtex Pré-Frontal , Pele , Sistema Nervoso Simpático , Estimulação Transcraniana por Corrente Contínua , Humanos , Córtex Pré-Frontal/fisiologia , Masculino , Feminino , Adulto , Sistema Nervoso Simpático/fisiologia , Adulto Jovem , Pele/inervação , Estimulação Transcraniana por Corrente Contínua/métodos , Estimulação Elétrica/métodos , Nervo Fibular/fisiologia , Lateralidade Funcional/fisiologiaRESUMO
Pain is a complex experience that involves sensory, emotional, and motivational components. It has been suggested that pain arising from the head and orofacial regions evokes stronger emotional responses than pain from the body. Indeed, recent work in rodents reports different patterns of activation in ascending pain pathways during noxious stimulation of the skin of the face when compared to noxious stimulation of the body. Such differences may dictate different activation patterns in higher brain regions, specifically in those areas processing the affective component of pain. We aimed to use ultra-high field functional magnetic resonance imaging (fMRI at 7-Tesla) to determine whether noxious thermal stimuli applied to the surface of the face and body evoke differential activation patterns within the ascending pain pathway in awake humans (n=16). Compared to the body, noxious heat stimulation to the face evoked more widespread signal changes in prefrontal cortical regions and numerous brainstem and subcortical limbic areas. Moreover, facial pain evoked significantly different signal changes in the lateral parabrachial nucleus, substantia nigra, paraventricular hypothalamus, and paraventricular thalamus, to those evoked by body pain. These results are consistent with recent preclinical findings of differential activation in the brainstem and subcortical limbic nuclei and associated cortices during cutaneous pain of the face when compared with the body. The findings suggest one potential mechanism by which facial pain could evoke a greater emotional impact than that evoked by body pain.
Assuntos
Mapeamento Encefálico , Sistema Límbico , Imageamento por Ressonância Magnética , Núcleos Parabraquiais , Humanos , Masculino , Feminino , Adulto , Núcleos Parabraquiais/fisiologia , Núcleos Parabraquiais/diagnóstico por imagem , Sistema Límbico/diagnóstico por imagem , Sistema Límbico/fisiopatologia , Adulto Jovem , Mapeamento Encefálico/métodos , Dor/fisiopatologia , Dor/diagnóstico por imagem , Dor Facial/diagnóstico por imagem , Dor Facial/fisiopatologia , Vias Neurais/fisiopatologia , Vias Neurais/diagnóstico por imagemRESUMO
Trigeminal neuropathic pain is emotionally distressing and disabling. It presents with allodynia, hyperalgesia and dysaesthesia. In preclinical models it has been assumed that cephalic nerve constriction injury shows identical molecular, cellular, and sex dependent neuroimmune changes as observed in extra-cephalic injury models. This study sought empirical evidence for such assumptions using the infraorbital nerve chronic constriction model (ION-CCI). We compared the behavioural consequences of nerve constriction with: (i) the temporal patterns of recruitment of macrophages and T-lymphocytes at the site of nerve injury and in the trigeminal ganglion; and (ii) the degree of demyelination and axonal reorganisation in the injured nerve. Our data demonstrated that simply testing for allodynia and hyperalgesia as is done in extra-cephalic neuropathic pain models does not provide access to the range of injury-specific nociceptive responses and behaviours reflective of the experience of trigeminal neuropathic pain. Similarly, trigeminal neuroimmune changes evoked by nerve injury are not the same as those identified in models of extra-cephalic neuropathy. Specifically, the timing, magnitude, and pattern of ION-CCI evoked macrophage and T-lymphocyte activity differs between the sexes.
Assuntos
Neuralgia , Neuralgia do Trigêmeo , Ratos , Masculino , Feminino , Animais , Hiperalgesia/metabolismo , Ratos Sprague-Dawley , Neuralgia do Trigêmeo/metabolismo , Neuralgia/metabolismo , Gânglio Trigeminal/metabolismo , Modelos Animais de DoençasRESUMO
Sinusoidal galvanic vestibular stimulation (sGVS) induces robust modulation of muscle sympathetic nerve activity (MSNA) alongside perceptions of side-to-side movement, sometimes with an accompanying feeling of nausea. We recently showed that transcranial alternating current stimulation (tACS) of the dorsolateral prefrontal cortex (dlPFC) also modulates MSNA, but does not generate any perceptions. Here, we tested the hypothesis that when the two stimuli are given concurrently, the modulation of MSNA would be additive. MSNA was recorded from 11 awake participants via a tungsten microelectrode inserted percutaneously into the right common peroneal nerve at the fibular head. Sinusoidal stimuli (± 2 mA, 0.08 Hz, 100 cycles) were applied in randomised order as follows: (i) tACS of the dlPFC at electroencephalogram (EEG) site F4 and referenced to the nasion; (ii) bilateral sGVS applied to the vestibular apparatuses via the mastoid processes; and (iii) tACS and sGVS together. Previously obtained data from 12 participants supplemented the data for stimulation protocols (i) and (ii). Cross-correlation analysis revealed that each stimulation protocol caused significant modulation of MSNA (modulation index (paired data): 35.2 ± 19.4% for sGVS; 27.8 ± 15.2% for tACS), but there were no additive effects when tACS and sGVS were delivered concurrently (32.1 ± 18.5%). This implies that the vestibulosympathetic reflexes are attenuated with concurrent dlPFC stimulation. These results suggest that the dlPFC is capable of blocking the processing of vestibular inputs through the brainstem and, hence, the generation of vestibulosympathetic reflexes.
Assuntos
Músculo Esquelético , Sistema Nervoso Simpático , Vestíbulo do Labirinto , Humanos , Masculino , Adulto , Feminino , Adulto Jovem , Vestíbulo do Labirinto/fisiologia , Sistema Nervoso Simpático/fisiologia , Músculo Esquelético/fisiologia , Córtex Pré-Frontal Dorsolateral/fisiologia , Estimulação Transcraniana por Corrente Contínua , Eletroencefalografia/métodos , Córtex Pré-Frontal/fisiologia , Estimulação Elétrica/métodosRESUMO
Prior experiences, conditioning cues, and expectations of improvement are essential for placebo analgesia expression. The dorsolateral prefrontal cortex is considered a key region for converting these factors into placebo responses. Since dorsolateral prefrontal cortex neuromodulation can attenuate or amplify placebo, we sought to investigate dorsolateral prefrontal cortex biochemistry and function in 38 healthy individuals during placebo analgesia. After conditioning participants to expect pain relief from a placebo "lidocaine" cream, we collected baseline magnetic resonance spectroscopy (1H-MRS) at 7 Tesla over the right dorsolateral prefrontal cortex. Following this, functional magnetic resonance imaging scans were collected during which identical noxious heat stimuli were delivered to the control and placebo-treated forearm sites. There was no significant difference in the concentration of gamma-aminobutyric acid, glutamate, Myo-inositol, or N-acetylaspartate at the level of the right dorsolateral prefrontal cortex between placebo responders and nonresponders. However, we identified a significant inverse relationship between the excitatory neurotransmitter glutamate and pain rating variability during conditioning. Moreover, we found placebo-related activation within the right dorsolateral prefrontal cortex and altered functional magnetic resonance imaging coupling between the dorsolateral prefrontal cortex and the midbrain periaqueductal gray, which also correlated with dorsolateral prefrontal cortex glutamate. These data suggest that the dorsolateral prefrontal cortex formulates stimulus-response relationships during conditioning, which are then translated to altered cortico-brainstem functional relationships and placebo analgesia expression.
Assuntos
Analgesia , Córtex Pré-Frontal Dorsolateral , Humanos , Dor , Analgesia/métodos , Tronco Encefálico , Imageamento por Ressonância Magnética/métodos , Glutamatos , Córtex Pré-Frontal/diagnóstico por imagemRESUMO
The dorsolateral prefrontal cortex (dlPFC) is primarily involved in higher order executive functions, with there being evidence of lateralization. Brain imaging studies have revealed its link to the generation of skin sympathetic nerve activity (SSNA), which is elevated in states of emotional arousal or anxiety. However, no studies have directly explored dlPFC influences on SSNA. Transcranial alternating current stimulation (-2 to 2 mA, 0.08 Hz, 100 cycles) was applied between the left or right dlPFC and nasion via surface electrodes. Spontaneous bursts of SSNA were recorded from the common peroneal nerve via a tungsten microelectrode in 21 healthy participants. The modulation index was calculated for each stimulation paradigm by constructing cross-correlation histograms between SSNA and the sinusoidal stimulus. Stimulation of the dlPFC caused significant modulation of SSNA, but there was no significant difference in the median modulation index across sides. Stimulation also caused cyclic modulation of skin blood flow and sweat release. We have shown for the first time that stimulation of the dlPFC causes modulation of SSNA, also reflected in the effector-organ responses. This supports a role for the dlPFC in the control of SSNA, which likely contributes to the ability of emotions to bring about cutaneous vasoconstriction and sweat release.
Assuntos
Córtex Pré-Frontal Dorsolateral , Pele , Humanos , Fenômenos Fisiológicos da Pele , Sistema Nervoso Simpático/fisiologia , Encéfalo/fisiologia , Córtex Pré-FrontalRESUMO
PURPOSE: Evidence from animal and human studies demonstrates that cortical regions play a key role in autonomic modulation with a differential role for some brain regions located in the left and right brain hemispheres. Known as autonomic asymmetry, this phenomenon has been demonstrated by clinical observations, by experimental models, and currently by combined neuroimaging and direct recordings of sympathetic nerve activity. Previous studies report peculiar autonomic-mediated cardiovascular alterations following unilateral damage to the left or right insula, a multifunctional key cortical region involved in emotional processing linked to autonomic cardiovascular control and featuring asymmetric characteristics. METHODS: Based on clinical studies reporting specific damage to the insular cortex, this review aims to provide an overview of the prognostic significance of unilateral (left or right hemisphere) post-insular stroke cardiac alterations. In addition, we review experimental data aiming to unravel the central mechanisms involved in post-insular stroke cardiovascular complications. RESULTS AND CONCLUSION: Current clinical and experimental data suggest that stroke of the right insula can present a worse cardiovascular prognosis.
RESUMO
The midbrain periaqueductal grey (PAG) is a critical region for the mediation of pain-related behavioural responses. Neuronal tract tracing techniques in experimental animal studies have demonstrated that the lateral column of the PAG (lPAG) displays a crude somatotopy, which is thought to be critical for the selection of contextually appropriate behavioural responses, without the need for higher brain input. In addition to the different behavioural responses to cutaneous and muscle pain - active withdrawal versus passive coping - there is evidence that cutaneous pain is processed in the region of the lPAG and muscle pain in the adjacent ventrolateral PAG (vlPAG). Given the fundamental nature of these behavioural responses to cutaneous and muscle pain, these PAG circuits are assumed to have been preserved, though yet to be definitively documented in humans. Using ultra-high field (7-Tesla) functional magnetic resonance imaging we determined the locations of signal intensity changes in the PAG during noxious cutaneous heat stimuli and muscle pain in healthy control participants. Images were processed and blood oxygen level dependant (BOLD) signal changes within the PAG determined. It was observed that noxious cutaneous stimulation of the lip, cheek, and ear evoked maximal increases in BOLD activation in the rostral contralateral PAG, whereas noxious cutaneous stimulation of the thumb and toe evoked increases in the caudal contralateral PAG. Analysis of individual participants demonstrated that these activations were located in the lPAG. Furthermore, we found that deep muscular pain evoked the greatest increases in signal intensity in the vlPAG. These data suggest that the crude somatotopic organization of the PAG may be phyletically preserved between experimental animals and humans, with a body-face delineation capable of producing an appropriate behavioural response based on the location and tissue origin of a noxious stimulus.
Assuntos
Mialgia , Substância Cinzenta Periaquedutal , Animais , Humanos , Substância Cinzenta Periaquedutal/fisiologia , Neurônios , Comportamento Animal/fisiologia , Imageamento por Ressonância MagnéticaRESUMO
The vestibular apparatus provides spatial information on the position of the head in space and with respect to gravity. Low-frequency sinusoidal galvanic vestibular stimulation (sGVS), a means of selectively changing the firing of vestibular afferents, induces a frequency-dependent perception of sway and, in some individuals, induces nausea. Given that vestibular afferents project to the insular cortex-which forms part of the vestibular cortex-and that the insula receives inputs from the dorsolateral prefrontal cortex (dlPFC), we tested the hypothesis that electrical stimulation of the dlPFC can modulate vestibular inputs. Sinusoidal electrical stimulation (± 2 mA, 0.08 Hz, 100 cycles) was delivered via surface electrodes over (1) the mastoid processes alone (sGVS), (2) electroencephalogram (EEG) site F4 (right dlPFC) and the nasion or (3) to each site concurrently (sGVS + dlPFC) in 23 participants. The same stimulation protocol was used in a separate study to investigate EEG site F3 (left dlPFC) instead of F4 in 13 participants. During sGVS, all participants reported perceptions of sway and 13 participants also reported nausea, neither sensation of which occurred as a result of dlPFC stimulation. Interestingly, when sGVS and dlPFC stimulations were delivered concurrently, vestibular perceptions and sensations of nausea were almost completely abolished. We conclude that the dlPFC provides top-down control of vestibular inputs and further suggests that dlPFC stimulation may provide a novel means of controlling nausea.
Assuntos
Córtex Pré-Frontal Dorsolateral , Vestíbulo do Labirinto , Humanos , Vestíbulo do Labirinto/fisiologia , Estimulação Elétrica/métodos , Eletroencefalografia , Náusea , Córtex Pré-Frontal/fisiologia , Estimulação Magnética Transcraniana/métodosRESUMO
Pain perception can be powerfully influenced by an individual's expectations and beliefs. Although the cortical circuitry responsible for pain modulation has been thoroughly investigated, the brainstem pathways involved in the modulatory phenomena of placebo analgesia and nocebo hyperalgesia remain to be directly addressed. This study used ultra-high-field 7 tesla functional MRI (fMRI) to accurately resolve differences in brainstem circuitry present during the generation of placebo analgesia and nocebo hyperalgesia in healthy human participants (N = 25, 12 male). Over 2 successive days, through blinded application of altered thermal stimuli, participants were deceptively conditioned to believe that two inert creams labeled lidocaine (placebo) and capsaicin (nocebo) were acting to modulate their pain relative to a third Vaseline (control) cream. In a subsequent test phase, fMRI image sets were collected while participants were given identical noxious stimuli to all three cream sites. Pain intensity ratings were collected and placebo and nocebo responses determined. Brainstem-specific fMRI analysis revealed altered activity in key pain modulatory nuclei, including a disparate recruitment of the periaqueductal gray (PAG)-rostral ventromedial medulla (RVM) pathway when both greater placebo and nocebo effects were observed. Additionally, we found that placebo and nocebo responses differentially activated the parabrachial nucleus but overlapped in engagement of the substantia nigra and locus coeruleus. These data reveal that placebo and nocebo effects are generated through differential engagement of the PAG-RVM pathway, which in concert with other brainstem sites likely influences the experience of pain by modulating activity at the level of the dorsal horn.SIGNIFICANCE STATEMENT Understanding endogenous pain modulatory mechanisms would support development of effective clinical treatment strategies for both acute and chronic pain. Specific brainstem nuclei have long been known to play a central role in nociceptive modulation; however, because of the small size and complex organization of the nuclei, previous neuroimaging efforts have been limited in directly identifying how these subcortical networks interact during the development of antinociceptive and pro-nociceptive effects. We used ultra-high-field fMRI to resolve brainstem structures and measure signal change during placebo analgesia and nocebo hyperalgesia. We define overlapping and disparate brainstem circuitry responsible for altering pain perception. These findings extend our understanding of the detailed organization and function of discrete brainstem nuclei involved in pain processing and modulation.
Assuntos
Tronco Encefálico/fisiologia , Hiperalgesia/fisiopatologia , Efeito Nocebo , Percepção da Dor/fisiologia , Placebos/farmacologia , Adulto , Analgésicos , Feminino , Humanos , Imageamento por Ressonância Magnética , MasculinoRESUMO
Over the past two decades, magnetic resonance imaging (MRI) studies have explored brain activation patterns during acute noxious stimuli. Whilst these human investigations have detailed changes in primarily cortical regions, they have generally not explored discrete changes within small brain areas that are critical in driving behavioural, autonomic, and endocrine responses to pain, such as within subregions of the hypothalamus, amygdala, and midbrain periaqueductal gray matter (PAG). Ultra-high field (7-Tesla) MRI provides enough signal-to-noise at high spatial resolutions to investigate activation patterns within these small brain regions during acute noxious stimulation in awake humans. In this study we used 7T functional MRI to concentrate on hypothalamic, amygdala, and PAG signal changes during acute noxious orofacial stimuli. Noxious heat stimuli were applied in three separate fMRI scans to three adjacent sites on the face in 16 healthy control participants (7 females). Images were processed using SPM12 and custom software, and blood oxygen level dependent signal changes within the hypothalamus, amygdala, and PAG assessed. We identified altered activity within eight unique subregions of the hypothalamus, four unique subregions of the amygdala, and a single region in the lateral PAG. Specifically, within the hypothalamus and amygdala, signal intensity largely decreased during noxious stimulation, and increased in the lateral PAG. Furthermore, we found sex-related differences in discrete regions of the hypothalamus and amygdala. This study reveals that the activity of discrete nuclei during acute noxious thermal stimulation in awake humans.
Assuntos
Dor Aguda , Substância Cinzenta Periaquedutal , Tonsila do Cerebelo/diagnóstico por imagem , Feminino , Humanos , Hipotálamo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Substância Cinzenta Periaquedutal/diagnóstico por imagem , Substância Cinzenta Periaquedutal/fisiologia , VigíliaRESUMO
Complex regional pain syndrome (CRPS) is a painful condition commonly accompanied by movement disturbances and often affects the upper limbs. The basal ganglia motor loop is central to movement, however, non-motor basal ganglia loops are involved in pain, sensory integration, visual processing, cognition, and emotion. Systematic evaluation of each basal ganglia functional loop and its relation to motor and non-motor disturbances in CRPS has not been investigated. We recruited 15 upper limb CRPS and 45 matched healthy control subjects. Using functional magnetic resonance imaging, infraslow oscillations (ISO) and resting-state functional connectivity in motor and non-motor basal ganglia loops were investigated using putamen and caudate seeds. Compared to controls, CRPS subjects displayed increased ISO power in the putamen contralateral to the CRPS affected limb, specifically, in contralateral putamen areas representing the supplementary motor area hand, motor hand, and motor tongue. Furthermore, compared to controls, CRPS subjects displayed increased resting connectivity between these putaminal areas as well as from the caudate body to cortical areas such as the primary motor cortex, supplementary and cingulate motor areas, parietal association areas, and the orbitofrontal cortex. These findings demonstrate changes in basal ganglia loop function in CRPS subjects and may underpin motor disturbances of CRPS.
Assuntos
Síndromes da Dor Regional Complexa , Gânglios da Base/diagnóstico por imagem , Síndromes da Dor Regional Complexa/diagnóstico por imagem , Mãos , Humanos , Imageamento por Ressonância Magnética/métodos , MovimentoRESUMO
PURPOSE: The neural pathways in which the brain regulates the cardiovascular system is via sympathetic and parasympathetic control of the heart and sympathetic control of the systemic vasculature. Various cortical and sub-cortical sites are involved, but how these critical brain regions for cardiovascular control are altered in healthy aging and other risk conditions that may contribute to cardiovascular disease is uncertain. METHODS: Here we review the functional and structural brain changes in healthy aging, hypertension, and atrial fibrillation - noting their potential influence on the autonomic nervous system and hence on cardiovascular control. RESULTS: Evidence suggests that aging, hypertension, and atrial fibrillation are each associated with functional and structural changes in specific areas of the central nervous system involved in autonomic control. Increased muscle sympathetic nerve activity (MSNA) and significant alterations in the brain regions involved in the default mode network are commonly reported in aging, hypertension, and atrial fibrillation. CONCLUSIONS: Further studies using functional and structural magnetic resonance imaging (MRI) coupled with autonomic nerve activity in healthy aging, hypertension, and atrial fibrillation promise to reveal the underlying brain circuitry modulating the abnormal sympathetic nerve activity in these conditions. This understanding will guide future therapies to rectify dysregulation of autonomic and cardiovascular control by the brain.
Assuntos
Fibrilação Atrial , Sistema Cardiovascular , Hipertensão , Humanos , Fibrilação Atrial/etiologia , Coração , EncéfaloRESUMO
BACKGROUND: Migraine is a neurological disorder characterized by intense, debilitating headaches, often coupled with nausea, vomiting and sensitivity to light and sound. Whilst changes in sensory processes during a migraine attack have been well-described, there is growing evidence that even between migraine attacks, sensory abilities are disrupted in migraine. Brain imaging studies have investigated altered coupling between areas of the descending pain modulatory pathway but coupling between somatosensory processing regions between migraine attacks has not been properly studied. The aim of this study was to determine if ongoing functional connectivity between visual, auditory, olfactory, gustatory and somatosensory cortices are altered during the interictal phase of migraine. METHODS: To explore the neural mechanisms underpinning interictal changes in sensory processing, we used functional magnetic resonance imaging to compare resting brain activity patterns and connectivity in migraineurs between migraine attacks (n = 32) and in healthy controls (n = 71). Significant differences between groups were determined using two-sample random effects procedures (p < 0.05, corrected for multiple comparisons, minimum cluster size 10 contiguous voxels, age and gender included as nuisance variables). RESULTS: In the migraine group, increases in infra-slow oscillatory activity were detected in the right primary visual cortex (V1), secondary visual cortex (V2) and third visual complex (V3), and left V3. In addition, resting connectivity analysis revealed that migraineurs displayed significantly enhanced connectivity between V1 and V2 with other sensory cortices including the auditory, gustatory, motor and somatosensory cortices. CONCLUSIONS: These data provide evidence for a dysfunctional sensory network in pain-free migraine patients which may be underlying altered sensory processing between migraine attacks.
Assuntos
Transtornos de Enxaqueca , Córtex Visual Primário , Encéfalo , Humanos , Imageamento por Ressonância Magnética , Transtornos de Enxaqueca/complicações , Transtornos de Enxaqueca/diagnóstico por imagem , Córtex SomatossensorialRESUMO
BACKGROUND: The precise underlying mechanisms of migraine remain unknown. Although we have previously shown acute orofacial pain evoked changes within the brainstem of individuals with migraine, we do not know if these brainstem alterations are driven by changes in higher cortical regions. The aim of this investigation is to extend our previous investigation to determine if higher brain centers display altered activation patterns and connectivity in migraineurs during acute orofacial noxious stimuli. METHODS: Functional magnetic resonance imaging was performed in 29 healthy controls and 25 migraineurs during the interictal and immediately (within 24-h) prior to migraine phases. We assessed activation of higher cortical areas during noxious orofacial heat stimulation using a thermode device and assessed whole scan and pain-related changes in connectivity. RESULTS: Despite similar overall pain intensity ratings between all three groups, migraineurs in the group immediately prior to migraine displayed greater activation of the ipsilateral nucleus accumbens, the contralateral ventrolateral prefrontal cortex and two clusters in the dorsolateral prefrontal cortex (dlPFC). Reduced whole scan dlPFC [Z + 44] connectivity with cortical/subcortical and brainstem regions involved in pain modulation such as the putamen and primary motor cortex was demonstrated in migraineurs. Pain-related changes in connectivity of the dlPFC and the hypothalamus immediately prior to migraine was also found to be reduced with brainstem pain modulatory areas such as the rostral ventromedial medulla and dorsolateral pons. CONCLUSIONS: These data reveal that the modulation of brainstem pain modulatory areas by higher cortical regions may be aberrant during pain and these alterations in this descending pain modulatory pathway manifests exclusively prior to the development of a migraine attack.
Assuntos
Córtex Pré-Frontal Dorsolateral , Transtornos de Enxaqueca , Encéfalo/diagnóstico por imagem , Tronco Encefálico/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Transtornos de Enxaqueca/diagnóstico por imagem , DorRESUMO
Using fMRI (functional magnetic resonance imaging), we explored the effect of transcranial photobiomodulation on four major resting-state brain networks, namely the sensorimotor, salience, default mode and central executive networks, in normal young subjects. We used a vielight transcranial device (810 nm) and compared the scans in 20 subjects (mean age 30.0 ± 2.8 years) after active- and sham-photobiomodulation sessions. Four sets of analysis-independent components, network connectivity, infra-slow oscillatory power and arterial spin labelling-were undertaken. Our results showed that when comparing pre- with post-active and pre- with post-sham photobiomodulation scans, there were no substantial differences in activity across any of the four resting-state networks examined, indicating no clear photobiomodulation effect. When taken together with previous findings, we suggest that the impact of photobiomodulation becomes much clearer only after brain circuitry is altered, for example, after a neurone undergoes some change in its equilibrium or homeostasis, either during pathology or ageing, or during a change in functional activity when individuals are engaged in a specific task (e.g. evoked brain activity).
Assuntos
Mapeamento Encefálico , Encéfalo , Adulto , Envelhecimento , Encéfalo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Rede Nervosa/diagnóstico por imagem , Vias Neurais , Sujeitos da PesquisaRESUMO
Complex regional pain syndrome (CRPS) is a chronic neuropathic pain disorder that typically occurs in the limbs, usually the upper limb. CRPS usually develops from a peripheral event but its maintenance relies on changes within the central nervous system. While functional abnormalities in the thalamus and primary somatosensory cortex (S1) of the brain are some of the most consistently reported brain findings in CRPS, the mechanisms are yet to be explored in full, not least of all how these two regions interact and how they might relate to clinical deficits, such as the commonly reported poor tactile acuity in this condition. This study recruited 15 upper-limb CRPS subjects and 30 healthy controls and used functional magnetic resonance imaging (fMRI) to investigate infra-slow oscillations (ISOs) in critical pain regions of the brain in CRPS. As hypothesised, we found CRPS was associated with increases in resting signal intensity ISOs (0.03-0.06 Hz) in the thalamus contralateral to the painful limb in CRPS subjects. Interestingly, there was no such difference between groups in S1, however CRPS subjects displayed stronger thalamo-S1 functional connectivity than controls, and this was related to pain. As predicted, CRPS subjects displayed poor tactile acuity on the painful limb which, interestingly, was also related to thalamo-S1 functional connectivity strength. Our findings provide novel evidence of altered patterns of resting activity and connectivity in CRPS which may underlie altered thalamocortical loop dynamics and the constant perception of pain.
Assuntos
Síndromes da Dor Regional Complexa/fisiopatologia , Conectoma , Rede Nervosa/fisiopatologia , Córtex Somatossensorial/fisiopatologia , Tálamo/fisiopatologia , Percepção do Tato/fisiologia , Adulto , Síndromes da Dor Regional Complexa/diagnóstico por imagem , Discriminação Psicológica/fisiologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Córtex Somatossensorial/diagnóstico por imagem , Tálamo/diagnóstico por imagem , Extremidade Superior/fisiopatologiaRESUMO
BACKGROUND: There is evidence of altered resting hypothalamic activity patterns and connectivity prior to a migraine, however it remains unknown if these changes are driven by changes in overall hypothalamic activity levels. If they are, it would corroborate the idea that changes in hypothalamic function result in alteration in brainstem pain processing sensitivity, which either triggers a migraine headache itself or allows an external trigger to initiate a migraine headache. We hypothesise that hypothalamic activity increases immediately prior to a migraine headache and this is accompanied by altered functional connectivity to pain processing sites in the brainstem. METHODS: In 34 migraineurs and 26 healthy controls, we collected a series comprising 108 pseudo-continuous arterial spin labelling images and 180 gradient-echo echo planar resting-state functional magnetic resonance volumes to measure resting regional cerebral blood flow and functional connectivity respectively. Images were pre-processed and analysed using custom SPM12 and Matlab software. RESULTS: Our results reflect that immediately prior to a migraine headache, resting regional cerebral blood flow decreases in the lateral hypothalamus. In addition, resting functional connectivity strength decreased between the lateral hypothalamus and important regions of the pain processing pathway, such as the midbrain periaqueductal gray, dorsal pons, rostral ventromedial medulla and cingulate cortex, only during this critical period before a migraine headache. CONCLUSION: These data suggest altered hypothalamic function and connectivity in the period immediately prior to a migraine headache and supports the hypothesis that the hypothalamus is involved in migraine initiation.