Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Biochim Biophys Acta ; 1828(2): 816-23, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23174350

RESUMO

The human immunodeficiency virus type 1 (HIV-1) p6 protein has recently been recognized as a docking site for several cellular and viral binding partners and is important for the formation of infectious viruses. Most of its known functions are suggested to occur under hydrophobic conditions near the cytoplasmic membrane, where the protein is presumed to exist in its most structured state. Although p6 is involved in manifold specific interactions, the protein has previously been considered to possess a random structure in aqueous solution. We show that p6 exhibits a defined structure with N- and C-terminal helical domains, connected by a flexible hinge region in 100mM dodecylphosphocholine micelle solution at pH 7 devoid of any organic co-solvents, indicating that this is a genuine limiting structural feature of the molecule in a hydrophobic environment. Furthermore, we show that p6 directly interacts with a cytoplasmic model membrane through both N-terminal and C-terminal regions by use of surface plasmon resonance (SPR) spectroscopy. Phosphorylation of Ser-40 located in the center of the C-terminal α-helix does not alter the secondary structure of the protein but amplifies the interaction with membranes significantly, indicating that p6 binds to the polar head groups at the surface of the cytoplasmic membrane. The increased hydrophobic membrane interaction of p6(23-52) S40F correlated with the observed increased amount of the polyprotein Gag in the RIPA insoluble fraction when Ser40 of p6 was mutated with Phe indicating that p6 modulates the membrane interactions of HIV-1 Gag.


Assuntos
Membrana Celular/metabolismo , HIV-1/metabolismo , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química , Animais , Biofísica/métodos , Cardiolipinas/química , Bovinos , Citoplasma/metabolismo , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Lipossomos/química , Espectroscopia de Ressonância Magnética/métodos , Espectrometria de Massas/métodos , Micelas , Peptídeos/química , Fosfatidilcolinas/química , Conformação Proteica , Estrutura Terciária de Proteína , Serina/química , Solventes/química , Esfingomielinas/química , Ressonância de Plasmônio de Superfície
2.
Biochim Biophys Acta ; 1834(2): 568-82, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23220419

RESUMO

The proapoptotic influenza A virus PB1-F2 protein contributes to viral pathogenicity and is present in most human and avian influenza isolates. The structures of full-length PB1-F2 of the influenza strains Pandemic flu 2009 H1N1, 1918 Spanish flu H1N1, Bird flu H5N1 and H1N1 PR8, have been characterized by NMR and CD spectroscopy. The study was conducted using chemically synthesized full-length PB1-F2 protein and fragments thereof. The amino acid residues 30-70 of PR8 PB1-F2 were found to be responsible for amyloid formation of the protein, which could be assigned to formation of ß-sheet structures, although α-helices were the only structural features detected under conditions that mimic a membranous environment. At membranous conditions, in which the proteins are found in their most structured state, significant differences become apparent between the PB1-F2 variants investigated. In contrast to Pandemic flu 2009 H1N1 and PR8 PB1-F2, which exhibit a continuous extensive C-terminal α-helix, both Spanish flu H1N1 and Bird flu H5N1 PB1-F2 contain a loop region with residues 66-71 that divides the C-terminus into two shorter helices. The observed structural differences are located to the C-terminal ends of the proteins to which most of the known functions of these proteins have been assigned. A C-terminal helix-loop-helix motif might be a structural signature for PB1-F2 of the highly pathogenic influenza viruses as observed for 1918 Spanish flu H1N1 and Bird flu H5N1 PB1-F2. This signature could indicate the pathological nature of viruses emerging in the future and thus aid in the recognition of these viruses.


Assuntos
Vírus da Influenza A Subtipo H1N1/química , Virus da Influenza A Subtipo H5N1/química , Proteínas Virais/química , Amiloide/química , Amiloide/genética , Sequências Hélice-Alça-Hélice , Vírus da Influenza A Subtipo H1N1/genética , Virus da Influenza A Subtipo H5N1/genética , Especificidade da Espécie , Proteínas Virais/genética
3.
Biochim Biophys Acta ; 1824(4): 667-78, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22342556

RESUMO

The 52-amino acid human immunodeficiency virus type 1 (HIV-1) p6 protein has previously been recognized as a docking site for several cellular and viral binding factors and is important for the formation of infectious viruses. A particular structural feature of p6 is the notably high relative content of proline residues, located at positions 5, 7, 10, 11, 24, 30, 37 and 49 in the sequence. Proline cis/trans isomerism was detected for all these proline residues to such an extent that more than 40% of all p6 molecules contain at least one proline in a cis conformation. 2D (1)H nuclear magnetic resonance analysis of full-length HIV-1 p6 and p6 peptides established that cyclophilin A (CypA) interacts as a peptidyl-prolyl cis/trans isomerase with all proline residues of p6. Only catalytic amounts of CypA were necessary for the interaction with p6 to occur, strongly suggesting that the observed interaction is highly relevant in vivo. In addition, surface plasmon resonance studies revealed binding of full-length p6 to CypA, and that this binding was significantly stronger than any of its N- or C-terminal peptides. This study demonstrates the first identification of an interaction between HIV-1 p6 and the host cellular protein CypA. The mode of interaction involves both transient enzyme-substrate interactions and a more stable binding. The binding motifs of p6 to Tsg-101, ALIX and Vpr coincide with binding regions and catalytic sites of p6 to CypA, suggesting a potential role of CypA in modulating functional interactions of HIV-1.


Assuntos
Ciclofilina A/química , HIV-1/fisiologia , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química , Sequência de Aminoácidos , Domínio Catalítico , HIV-1/enzimologia , Interações Hospedeiro-Patógeno , Humanos , Interações Hidrofóbicas e Hidrofílicas , Isomerismo , Cinética , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Estrutura Secundária de Proteína , Solventes/química , Ressonância de Plasmônio de Superfície
4.
Proc Natl Acad Sci U S A ; 107(11): 4955-60, 2010 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-20194774

RESUMO

A reversible structural unlocking reaction, in which the close-packed van der Waals interactions break cooperatively, has been found for the villin headpiece subdomain (HP35) using triplet-triplet-energy transfer to monitor conformational fluctuations from equilibrium. Unlocking is associated with an unfavorable enthalpy change (DeltaH(0) = 35 +/- 4 kJ/mol) which is nearly compensated in free energy by the entropy change (DeltaS(0) = 112 +/- 20 Jxmol(-1)xK(-1)). The unlocking reaction has a time constant of about 1 mus at 5 degrees C and is enthalpy-limited with an activation energy of 32 +/- 1 kJ/mol and a large Arrhenius preexponential factor of A = 7.5 x 10(11) s(-1). In the unlocked state a fast local conformational fluctuation with a time constant of 170 ns and a low activation barrier of 17 +/- 1 kJ/mol leads to unfolding of the C-terminal helix and to its undocking from the core. On a much slower time scale, global unfolding occurs from the unlocked state. These results suggest that native protein structures are locked into conformations with low amplitude motions. Large scale motions and global unfolding require an initial structural unlocking step leading to a state with properties of a dry molten globule. The experiments additionally yielded information on the dynamics of loop formation between different positions in unfolded HP35. Comparison of the results with dynamics in unstructured model peptides indicates slightly decelerated kinetics of local loop formation in the C-terminal region which points at residual, nonrandom structure. Dynamics of long-range loop formation, in contrast, are not influenced by residual structure, which argues against unfolded state properties as molecular origin for ultrafast folding of HP35.


Assuntos
Proteínas dos Microfilamentos/química , Sequência de Aminoácidos , Transferência de Energia/efeitos dos fármacos , Guanidina/farmacologia , Cinética , Proteínas dos Microfilamentos/metabolismo , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Dobramento de Proteína/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Coloração e Rotulagem , Temperatura
5.
Biochim Biophys Acta ; 1808(2): 572-9, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20708597

RESUMO

ORF8a protein is 39 residues long and contains a single transmembrane domain. The protein is synthesized using solid phase peptide synthesis and reconstituted into artificial lipid bilayers that forms cation-selective ion channels with a main conductance level of 8.9±0.8pS at elevated temperature (38.5°C). Computational modeling studies including multi nanosecond molecular dynamics simulations in a hydrated POPC lipid bilayer are done with a 22 amino acid transmembrane helix to predict a putative homooligomeric helical bundle model. A structural model of a pentameric bundle is proposed with cysteines, serines and threonines facing the pore.


Assuntos
Canais Iônicos/química , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/química , Proteínas da Matriz Viral/química , Sequência de Aminoácidos , Simulação por Computador , Canais Iônicos/genética , Bicamadas Lipídicas , Modelos Moleculares , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Proteínas da Matriz Viral/genética
6.
Retrovirology ; 8: 11, 2011 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-21324168

RESUMO

BACKGROUND: The HIV-1 p6 Gag protein regulates the final abscission step of nascent virions from the cell membrane by the action of two late assembly (L-) domains. Although p6 is located within one of the most polymorphic regions of the HIV-1 gag gene, the 52 amino acid peptide binds at least to two cellular budding factors (Tsg101 and ALIX), is a substrate for phosphorylation, ubiquitination, and sumoylation, and mediates the incorporation of the HIV-1 accessory protein Vpr into viral particles. As expected, known functional domains mostly overlap with several conserved residues in p6. In this study, we investigated the importance of the highly conserved serine residue at position 40, which until now has not been assigned to any known function of p6. RESULTS: Consistently with previous data, we found that mutation of Ser-40 has no effect on ALIX mediated rescue of HIV-1 L-domain mutants. However, the only feasible S40F mutation that preserves the overlapping pol open reading frame (ORF) reduces virus replication in T-cell lines and in human lymphocyte tissue cultivated ex vivo. Most intriguingly, L-domain mediated virus release is not dependent on the integrity of Ser-40. However, the S40F mutation significantly reduces the specific infectivity of released virions. Further, it was observed that mutation of Ser-40 selectively interferes with the cleavage between capsid (CA) and the spacer peptide SP1 in Gag, without affecting cleavage of other Gag products. This deficiency in processing of CA, in consequence, led to an irregular morphology of the virus core and the formation of an electron dense extra core structure. Moreover, the defects induced by the S40F mutation in p6 can be rescued by the A1V mutation in SP1 that generally enhances processing of the CA-SP1 cleavage site. CONCLUSIONS: Overall, these data support a so far unrecognized function of p6 mediated by Ser-40 that occurs independently of the L-domain function, but selectively affects CA maturation and virus core formation, and consequently the infectivity of released virions.


Assuntos
Capsídeo/metabolismo , Serina/genética , Montagem de Vírus , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Sequência de Aminoácidos , Linhagem Celular , Células Cultivadas , Regulação Viral da Expressão Gênica , Células HeLa , Humanos , Espectroscopia de Ressonância Magnética , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Mutação , Linfócitos T , Vírion/metabolismo , Vírion/ultraestrutura , Liberação de Vírus , Replicação Viral , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética
7.
BMC Struct Biol ; 11: 49, 2011 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-22185200

RESUMO

BACKGROUND: Cyclophilin A (CypA) represents a potential key molecule in future antiretroviral therapy since inhibition of CypA suppresses human immunodeficiency virus type 1 (HIV-1) replication. CypA interacts with the virus proteins Capsid (CA) and Vpr, however, the mechanism through which CypA influences HIV-1 infectivity still remains unclear. RESULTS: Here the interaction of full-length HIV-1 Vpr with the host cellular factor CypA has been characterized and quantified by surface plasmon resonance spectroscopy. A C-terminal region of Vpr, comprising the 16 residues 75GCRHSRIGVTRQRRAR90, with high binding affinity for CypA has been identified. This region of Vpr does not contain any proline residues but binds much more strongly to CypA than the previously characterized N-terminal binding domain of Vpr, and is thus the first protein binding domain to CypA described involving no proline residues. The fact that the mutant peptide Vpr75-90 R80A binds more weakly to CypA than the wild-type peptide confirms that Arg-80 is a key residue in the C-terminal binding domain. The N- and C-terminal binding regions of full-length Vpr bind cooperatively to CypA and have allowed a model of the complex to be created. The dissociation constant of full-length Vpr to CypA was determined to be approximately 320 nM, indicating that the binding may be stronger than that of the well characterized interaction of HIV-1 CA with CypA. CONCLUSIONS: For the first time the interaction of full-length Vpr and CypA has been characterized and quantified. A non-proline-containing 16-residue region of C-terminal Vpr which binds specifically to CypA with similar high affinity as full-length Vpr has been identified. The fact that this is the first non-proline containing binding motif of any protein found to bind to CypA, changes the view on how CypA is able to interact with other proteins. It is interesting to note that several previously reported key functions of HIV-1 Vpr are associated with the identified N- and C-terminal binding domains of the protein to CypA.


Assuntos
Ciclofilina A/metabolismo , HIV-1/fisiologia , Interações Hospedeiro-Patógeno , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/química , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , HIV-1/metabolismo , Humanos , Modelos Moleculares , Mutação , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/genética
8.
BMC Struct Biol ; 10: 31, 2010 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-20920334

RESUMO

BACKGROUND: Cyclophilin A (CypA) represents a potential target for antiretroviral therapy since inhibition of CypA suppresses human immunodeficiency virus type 1 (HIV-1) replication, although the mechanism through which CypA modulates HIV-1 infectivity still remains unclear. The interaction of HIV-1 viral protein R (Vpr) with the human peptidyl prolyl isomerase CypA is known to occur in vitro and in vivo. However, the nature of the interaction of CypA with Pro-35 of N-terminal Vpr has remained undefined. RESULTS: Characterization of the interactions of human CypA with N-terminal peptides of HIV-1 Vpr has been achieved using a combination of nuclear magnetic resonace (NMR) exchange spectroscopy and surface plasmon resonance spectroscopy (SPR). NMR data at atomic resolution indicate prolyl cis/trans isomerisation of the highly conserved proline residues Pro-5, -10, -14 and -35 of Vpr are catalyzed by human CypA and require only very low concentrations of the isomerase relative to that of the peptide substrates. Of the N-terminal peptides of Vpr only those containing Pro-35 bind to CypA in a biosensor assay. SPR studies of specific N-terminal peptides with decreasing numbers of residues revealed that a seven-residue motif centred at Pro-35 consisting of RHFPRIW, which under membrane-like solution conditions comprises the loop region connecting helix 1 and 2 of Vpr and the two terminal residues of helix 1, is sufficient to maintain strong specific binding. CONCLUSIONS: Only N-terminal peptides of Vpr containing Pro-35, which appears to be vital for manifold functions of Vpr, bind to CypA in a biosensor assay. This indicates that Pro-35 is essential for a specific CypA-Vpr binding interaction, in contrast to the general prolyl cis/trans isomerisation observed for all proline residues of Vpr, which only involve transient enzyme-substrate interactions. Previously suggested models depicting CypA as a chaperone that plays a role in HIV-1 virulence are now supported by our data. In detail the SPR data of this interaction were compatible with a two-state binding interaction model that involves a conformational change during binding. This is in accord with the structural changes observed by NMR suggesting CypA catalyzes the prolyl cis/trans interconversion during binding to the RHFP35RIW motif of N-terminal Vpr.


Assuntos
Ciclofilina A/metabolismo , Peptidilprolil Isomerase/metabolismo , Prolina/metabolismo , Ligação Proteica , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/metabolismo , Humanos , Cinética , Ressonância Magnética Nuclear Biomolecular , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Ressonância de Plasmônio de Superfície , Replicação Viral/fisiologia
9.
Cell Microbiol ; 11(10): 1502-16, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19523156

RESUMO

The 11(th) influenza A virus (IAV) protein PB1-F2 is encoded by an alternative reading frame of the PB1 polymerase gene and found in the nucleus, cytosol and at the mitochondria of infected cells, the latter is consistent with experimental evidence for its pro-apoptotic function. Here, the function of PB1-F2 as a phosphoprotein was characterized. PB1-F2 derived from isolate IAV(PR8) and synthetic fragments thereof were phosphorylated in vitro by purified protein kinase C (PKC) and cellular extract. Constitutively active PKCalpha interacts with PB1-F2 in yeast two-hybrid assays. (32)P radiolabelling of transfected 293T cells revealed that phosphorylation of PB1-F2 is sensitive to inhibitors of PKC and could be increased by the PKC activator PMA. ESI-MS analysis and cellular expression of PB1-F2 mutants identified the positions Ser-35 as the major and the Thr-27 as an alternative PKC phosphorylation site. Infection of MDCK cells with recombinant IAV(PR8) lacking these PKC sites abrogated phosphorylation of PB1-F2 in vivo. Furthermore, infection of primary human monocytes with mutant viruses lacking these PB1-F2 phosphorylation sites resulted in impaired caspase 3 activation and reduced progeny virus titres, indicating that the integrity of the identified phosphorylation sites is crucial for a cell-specific function of PB1-F2 during virus replication.


Assuntos
Apoptose , Vírus da Influenza A/patogenicidade , Monócitos/imunologia , Proteína Quinase C/metabolismo , Proteínas Virais/metabolismo , Linhagem Celular , Humanos , Fosforilação , Mapeamento de Interação de Proteínas , Saccharomyces cerevisiae , Técnicas do Sistema de Duplo-Híbrido
10.
Amino Acids ; 39(1): 243-55, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19997756

RESUMO

Proteasomes are known to be the main suppliers of MHC class I (MHC-I) ligands. In an attempt to identify coxsackievirus B3 (CVB3)-MHC-I epitopes, a combined approach of in silico MHC-I/transporters associated with antigen processing (TAP)-binding and proteasomal cleavage prediction was applied. Accordingly, 13 potential epitopes originating from the structural and non-structural protein region of CVB3 were selected for further in vitro processing analysis by proteasomes. Mass spectrometry demonstrated the generation of seven of the 13 predicted MHC-I ligands or respective ligand precursors by proteasomes. Detailed processing analysis of three adjacent MHC-I ligands with partially overlapping sequences, i.e. VP2(273-281), VP2(284-292) and VP2(285-293), revealed the preferential generation predominantly of the VP2(285-293) epitope by immunoproteasomes due to altered cleavage site preferences. The VP2(285-293) peptide was identified to be a high affinity binder, rendering VP2(285-293) a likely candidate for CD8 T cell immunity in CVB3 infection. In conclusion, the concerted usage of different in silico prediction methods and in vitro epitope processing/presentation studies was supportive in the identification of CVB3 MHC-I epitopes.


Assuntos
Biologia Computacional , Enterovirus Humano B/química , Enterovirus Humano B/imunologia , Epitopos/imunologia , Epitopos/metabolismo , Antígenos de Histocompatibilidade Classe I/imunologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Animais , Ligantes , Camundongos , Camundongos Endogâmicos C57BL
11.
Eur Biophys J ; 39(7): 1089-95, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19629466

RESUMO

Viral protein of regulation (Vpr) encoded by human immunodeficiency virus type 1 (HIV-1) is a short auxiliary protein that is 96 amino acids in length. During the viral life cycle, Vpr is released into the blood serum and is able to enter cellular membranes of noninfected cells. In this study a short peptide, Vpr(55-83), was shown to exhibit ion-channel-like activity when reconstituted into (1) planar lipid bilayers and (2) lipid bilayers held at the tip of a glass pipette. The two set-ups led to differences in the oligomerization state of the peptide, which was reflected in differences in the conductance levels. Experiments under applied hydrostatic pressure affect the dynamics of the protein within the membrane.


Assuntos
HIV-1/química , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/química , Bicamadas Lipídicas/química , Potenciais da Membrana , Peptídeos/química , Fosfatidilcolinas/química , Fosfatidiletanolaminas/química , Pressão
12.
J Pept Sci ; 16(1): 65-70, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19924731

RESUMO

To prevent aspartimide formation and related side products in Asp-Xaa, particularly Asp-Gly-containing peptides, usually the 2-hydroxy-4-methoxybenzyl (Hmb) backbone amide protection is applied for peptide synthesis according to the Fmoc-protocols. In the present study, the usefulness of the recently proposed acid-labile dicyclopropylmethyl (Dcpm) protectant was analyzed. Despite the significant steric hindrance of this bulky group, N-terminal H-(Dcpm)Gly-peptides are quantitatively acylated by potent acylating agents, and alternatively the dipeptide Fmoc-Asp(OtBu)-(Dcpm)Gly-OH derivative can be used as a building block. In contrast to the Hmb group, Dcpm is inert toward acylations, but is readily removed in the acid deprotection and resin-cleavage step.


Assuntos
Amidas/química , Dipeptídeos/química , Sequência de Aminoácidos , Cromatografia Líquida de Alta Pressão , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
13.
Mol Biol Cell ; 18(12): 4872-84, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17881725

RESUMO

The epithelial-specific adaptor AP1B sorts basolateral plasma membrane (PM) proteins in both biosynthetic and recycling routes, but the site where it carries out this function remains incompletely defined. Here, we have investigated this topic in Fischer rat thyroid (FRT) epithelial cells using an antibody against the medium subunit micro1B. This antibody was suitable for immunofluorescence and blocked the function of AP1B in these cells. The antibody blocked the basolateral recycling of two basolateral PM markers, Transferrin receptor (TfR) and LDL receptor (LDLR), in a perinuclear compartment with marker and functional characteristics of recycling endosomes (RE). Live imaging experiments demonstrated that in the presence of the antibody two newly synthesized GFP-tagged basolateral proteins (vesicular stomatitis virus G [VSVG] protein and TfR) exited the trans-Golgi network (TGN) normally but became blocked at the RE within 3-5 min. By contrast, the antibody did not block trafficking of green fluorescent protein (GFP)-LDLR from the TGN to the PM but stopped its recycling after internalization into RE in approximately 45 min. Our experiments conclusively demonstrate that 1) AP1B functions exclusively at RE; 2) TGN-to-RE transport is very fast and selective and is mediated by adaptors different from AP1B; and 3) the TGN and AP1B-containing RE cooperate in biosynthetic basolateral sorting.


Assuntos
Complexo 1 de Proteínas Adaptadoras/imunologia , Complexo 1 de Proteínas Adaptadoras/metabolismo , Anticorpos/imunologia , Endossomos/metabolismo , Animais , Linhagem Celular , Humanos , Glicoproteínas de Membrana/metabolismo , Proteína Quinase C/metabolismo , Ratos , Receptores de LDL/metabolismo , Receptores da Transferrina/metabolismo , Transdução de Sinais , Glândula Tireoide/metabolismo , Proteínas do Envelope Viral/metabolismo , Rede trans-Golgi/metabolismo
14.
Biochemistry ; 48(45): 10733-42, 2009 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-19835414

RESUMO

Binding of arrestin to photoactivated phosphorylated rhodopsin terminates the amplification of visual signals in photoreceptor cells. Currently, there is no crystal structure of a rhodopsin-arrestin complex available, although structures of unbound rhodopsin and arrestin have been determined. High-affinity receptor binding is dependent on distinct arrestin sites responsible for recognition of rhodopsin activation and phosphorylation. The loop connecting beta-strands V and VI in rod arrestin has been implicated in the recognition of active rhodopsin. We report the structure of receptor-bound arrestin peptide Arr(67-77) mimicking this loop based on solution NMR data. The peptide binds photoactivated rhodopsin in the unphosphorylated and phosphorylated form with similar affinities and stabilizes the metarhodopsin II photointermediate. A largely alpha-helical conformation of the receptor-bound peptide is observed.


Assuntos
Arrestina/química , Rodopsina/química , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Fotoquímica , Conformação Proteica
15.
Carcinogenesis ; 30(9): 1487-96, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19546160

RESUMO

The expression of proteinase-activated receptor (PAR)(2) in human hepatocellular carcinoma (HCC) was established by reverse transcription-polymerase chain reaction, confocal immunofluorescence and electron microscopy in permanent cell lines, primary HCC cell cultures and HCC tumor tissue. Stimulation of HCC cells with trypsin and the PAR(2)-selective activating peptide, 2-furoyl-LIGRLO-NH(2), increased cell invasion across Matrigel. Both effects were blocked by a PAR(2)-selective pepducin antagonist peptide (pal-PAR(2)) and by PAR(2) silencing with specific small interfering RNA (siRNA). PAR(2)-initiated HCC cell invasion was also blocked by inhibiting the hepatocyte growth factor receptor (Met receptor tyrosine kinase) with the receptor-targeted kinase inhibitors, SU 11274 and PHA 665752, or by downregulation of Met with specific siRNA. The involvement of Met in PAR(2)-mediated HCC invasive signaling was further supported by the finding that treatment of HCC cells with trypsin or the PAR(2)-selective agonist peptide, 2-furoyl-LIGRLO-NH(2), stimulated Met activation-phosphorylation. In addition, Met-dependent stimulation of p42/p44 mitogen-activated protein Kinases was found to be critical for the PAR(2)-Met receptor tyrosine kinase-invasive signaling axis in HCC cells. Our study establishes an important link between the PAR(2) and Met receptor tyrosine kinase signaling in promoting HCC cell invasion.


Assuntos
Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Proteínas Proto-Oncogênicas/fisiologia , Receptor PAR-2/fisiologia , Receptores de Fatores de Crescimento/fisiologia , Ativação Transcricional , Sequência de Aminoácidos , Linhagem Celular Tumoral , MAP Quinases Reguladas por Sinal Extracelular/fisiologia , Humanos , Dados de Sequência Molecular , Invasividade Neoplásica , Fosforilação , Proteínas Proto-Oncogênicas c-met , Espécies Reativas de Oxigênio/metabolismo , Receptor PAR-2/análise
16.
BMC Struct Biol ; 9: 74, 2009 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-20015412

RESUMO

BACKGROUND: The equine infection anemia virus (EIAV) p9 Gag protein contains the late (L-) domain required for efficient virus release of nascent virions from the cell membrane of infected cell. RESULTS: In the present study the p9 protein and N- and C-terminal fragments (residues 1-21 and 22-51, respectively) were chemically synthesized and used for structural analyses. Circular dichroism and 1H-NMR spectroscopy provide the first molecular insight into the secondary structure and folding of this 51-amino acid protein under different solution conditions. Qualitative 1H-chemical shift and NOE data indicate that in a pure aqueous environment p9 favors an unstructured state. In its most structured state under hydrophobic conditions, p9 adopts a stable helical structure within the C-terminus. Quantitative NOE data further revealed that this alpha-helix extends from Ser-27 to Ser-48, while the N-terminal residues remain unstructured. The structural elements identified for p9 differ substantially from that of the functional homologous HIV-1 p6 protein. CONCLUSIONS: These structural differences are discussed in the context of the different types of L-domains regulating distinct cellular pathways in virus budding. EIAV p9 mediates virus release by recruiting the ALG2-interacting protein X (ALIX) via the YPDL-motif to the site of virus budding, the counterpart of the YPXnL-motif found in p6. However, p6 contains an additional PTAP L-domain that promotes HIV-1 release by binding to the tumor susceptibility gene 101 (Tsg101). The notion that structures found in p9 differ form that of p6 further support the idea that different mechanisms regulate binding of ALIX to primary versus secondary L-domains types.


Assuntos
Proteínas de Ligação ao Cálcio/química , Produtos do Gene gag/química , HIV-1/química , Vírus da Anemia Infecciosa Equina/química , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química , Sequência de Aminoácidos , Sítios de Ligação , Proteínas de Ligação ao Cálcio/metabolismo , Dicroísmo Circular , Produtos do Gene gag/metabolismo , HIV-1/metabolismo , Vírus da Anemia Infecciosa Equina/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Homologia Estrutural de Proteína , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo
17.
Oncol Rep ; 21(5): 1261-7, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19360302

RESUMO

Thrombin has been recently demonstrated to promote hepatocellular carcinoma (HCC) cell migration by activation of the proteinase-activated receptor (PAR) subtypes PAR1 and PAR4 suggesting a role of these proteinase-receptor systems in HCC progression. In this study, we investigated the effect of (-)-epigallocatechin-3-gallate (EGCG), the major polyphenolic compound of green tea on thrombin-PAR1/PAR4-mediated hepatocellular carcinoma cell invasion and p42/p44 MAPKinase activation. In this study we used the permanent liver carcinoma cell line HEP-3B and two primary cultures established from surgically resected HCCs. We found that stimulation of HCC cells with thrombin, the PAR1-selective activating peptide, TFLLRN-NH2, and the PAR4-selective activating peptide, AYPGKF-NH2, increased cell invasion across a Matrigel-coated membrane barrier and stimulated activation of p42/p44 MAPKinase phosphorylation. Both the effects on p42/p44 MAPKinases, and on cell invasiveness induced by thrombin and the PAR1/4 subtype-selective agonist peptides were effectively blocked by EGCG. The results clearly identify EGCG as a potent inhibitor of the thrombin-PAR1/PAR4-p42/p44 MAPKinase invasive signaling axis in hepatocellular carcinoma cells as a previously unrecognized mode of action for EGCG in cancer cells. Moreover, the results suggest that (-)-epigal-locatechin-3-gallate might have therapeutic potential for hepatocellular carcinoma.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Catequina/análogos & derivados , Neoplasias Hepáticas/tratamento farmacológico , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Trombina/antagonistas & inibidores , Anticarcinógenos/farmacologia , Carcinoma Hepatocelular/enzimologia , Carcinoma Hepatocelular/patologia , Catequina/farmacologia , Processos de Crescimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Ativação Enzimática/efeitos dos fármacos , Humanos , Neoplasias Hepáticas/enzimologia , Neoplasias Hepáticas/patologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Invasividade Neoplásica , Oligopeptídeos/farmacologia , Fosforilação , Receptor PAR-1/agonistas , Receptor PAR-1/antagonistas & inibidores , Receptor PAR-1/metabolismo , Receptores de Trombina/agonistas , Receptores de Trombina/antagonistas & inibidores , Receptores de Trombina/metabolismo , Chá/química , Trombina/farmacologia
18.
PLoS Biol ; 3(2): e41, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15719057

RESUMO

The human immunodeficiency virus (HIV) Tat protein is acetylated by the transcriptional coactivator p300, a necessary step in Tat-mediated transactivation. We report here that Tat is deacetylated by human sirtuin 1 (SIRT1), a nicotinamide adenine dinucleotide-dependent class III protein deacetylase in vitro and in vivo. Tat and SIRT1 coimmunoprecipitate and synergistically activate the HIV promoter. Conversely, knockdown of SIRT1 via small interfering RNAs or treatment with a novel small molecule inhibitor of the SIRT1 deacetylase activity inhibit Tat-mediated transactivation of the HIV long terminal repeat. Tat transactivation is defective in SIRT1-null mouse embryonic fibroblasts and can be rescued by expression of SIRT1. These results support a model in which cycles of Tat acetylation and deacetylation regulate HIV transcription. SIRT1 recycles Tat to its unacetylated form and acts as a transcriptional coactivator during Tat transactivation.


Assuntos
Produtos do Gene tat/metabolismo , HIV/genética , Histona Desacetilases/genética , Sirtuínas/genética , Transcrição Gênica , Acetilação , Sequência de Bases , Primers do DNA , Regulação Viral da Expressão Gênica , Humanos , Dados de Sequência Molecular , Sirtuína 1 , Produtos do Gene tat do Vírus da Imunodeficiência Humana
19.
Photochem Photobiol ; 84(4): 831-8, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18282180

RESUMO

G protein-coupled receptors (GPCRs) are involved in the control of virtually all aspects of our behavior and physiology. Activated receptors catalyze nucleotide exchange in heterotrimeric G proteins (composed of alpha.GDP, beta and gamma subunits) on the inner surface of the cell membrane. The GPCR rhodopsin and the G protein transducin (G(t)) are key proteins in the early steps of the visual cascade. The main receptor interaction sites on G(t) are the C-terminal tail of the G(t)alpha-subunit and the farnesylated C-terminal tail of the G(t)gamma-subunit. Synthetic peptides derived from these C-termini specifically bind and stabilize the active rhodopsin conformation (R*). Here we report the synthesis of R*-interacting peptides containing photo-reactive groups with a specific isotope pattern, which can facilitate detection of cross-linked products by mass spectrometry. In a preliminary set of experiments, we characterized such peptides derived from the farnesylated G(t)gamma C-terminus (G(t)gamma(60-71)far) in terms of their capability to bind R*. Here, we describe novel peptides with photo-affinity labels that bind R* with affinities similar to that of the native G(t)gamma(60-71)far peptide. Such peptides will enable an improved experimental strategy to probe rhodopsin-G(t) interaction and to map so far unknown interaction sites between both proteins.


Assuntos
Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/metabolismo , Peptídeos/metabolismo , Rodopsina/química , Rodopsina/metabolismo , Sequência de Aminoácidos , Estabilidade de Medicamentos , Cinética , Modelos Moleculares , Peptídeos/síntese química , Peptídeos/química , Fotoquímica , Conformação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo
20.
J Clin Invest ; 114(2): 250-9, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15254592

RESUMO

The high incidence of hepatitis C virus (HCV) persistence raises the question of how HCV interferes with host immune responses. Studying a single-source HCV outbreak, we identified an HCV mutation that impaired correct carboxyterminal cleavage of an immunodominant HLA-A2-restricted CD8 cell epitope that is frequently recognized by recovered patients. The mutation, a conservative HCV nonstructural protein 3 (NS3) tyrosine to phenylalanine substitution, was absent in 54 clones of the infectious source, but present in 15/21 (71%) HLA-A2-positive and in 11/24 (46%) HLA-A2-negative patients with chronic hepatitis C. In order to analyze whether the mutation affected the processing of the HLA-A2-restricted CD8 cell epitope, mutant and wild-type NS3 polypeptides were digested in vitro with 20S constitutive proteasomes and with immunoproteasomes. The presence of the mutation resulted in impaired carboxyterminal cleavage of the epitope. In order to analyze whether impaired epitope processing affected T cell priming in vivo, HLA-A2-transgenic mice were infected with vaccinia viruses encoding either wild-type or mutant HCV NS3. The mutant induced fewer epitope-specific, IFN-gamma;-producing and fewer tetramer(+) cells than the wild type. These data demonstrate how a conservative mutation in the flanking region of an HCV epitope impairs the induction of epitope-specific CD8(+) T cells and reveal a mechanism that may contribute to viral sequence evolution in infected patients.


Assuntos
Cisteína Endopeptidases/metabolismo , Epitopos , Hepacivirus/genética , Hepacivirus/imunologia , Complexos Multienzimáticos/metabolismo , Mutação , Sequência de Aminoácidos , Animais , Linfócitos T CD8-Positivos/imunologia , Antígeno HLA-A2/genética , Antígeno HLA-A2/imunologia , Hepacivirus/metabolismo , Hepatite C/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Complexo de Endopeptidases do Proteassoma , Alinhamento de Sequência , Vaccinia virus/genética , Vaccinia virus/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA