Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
PLoS Pathog ; 17(8): e1009843, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34379707

RESUMO

In humans, orthohantaviruses can cause hemorrhagic fever with renal syndrome (HFRS) or hantavirus pulmonary syndrome (HPS). An earlier study reported that acute Andes virus HPS caused a massive and transient elevation in the number of circulating plasmablasts with specificity towards both viral and host antigens suggestive of polyclonal B cell activation. Immunoglobulins (Igs), produced by different B cell populations, comprise heavy and light chains; however, a certain amount of free light chains (FLCs) is constantly present in serum. Upregulation of FLCs, especially clonal species, associates with renal pathogenesis by fibril or deposit formations affecting the glomeruli, induction of epithelial cell disorders, or cast formation in the tubular network. We report that acute orthohantavirus infection increases the level of Ig FLCs in serum of both HFRS and HPS patients, and that the increase correlates with the severity of acute kidney injury in HFRS. The fact that the kappa to lambda FLC ratio in the sera of HFRS and HPS patients remained within the normal range suggests polyclonal B cell activation rather than proliferation of a single B cell clone. HFRS patients demonstrated increased urinary excretion of FLCs, and we found plasma cell infiltration in archival patient kidney biopsies that we speculate to contribute to the observed FLC excreta. Analysis of hospitalized HFRS patients' peripheral blood mononuclear cells showed elevated plasmablast levels, a fraction of which stained positive for Puumala virus antigen. Furthermore, B cells isolated from healthy donors were susceptible to Puumala virus in vitro, and the virus infection induced increased production of Igs and FLCs. The findings propose that hantaviruses directly activate B cells, and that the ensuing intense production of polyclonal Igs and FLCs may contribute to acute hantavirus infection-associated pathological findings.


Assuntos
Injúria Renal Aguda/patologia , Linfócitos B/imunologia , Infecções por Hantavirus/imunologia , Cadeias Leves de Imunoglobulina/sangue , Ativação Linfocitária/imunologia , Orthohantavírus/imunologia , Injúria Renal Aguda/sangue , Injúria Renal Aguda/etiologia , Infecções por Hantavirus/sangue , Infecções por Hantavirus/virologia , Humanos , Cadeias Leves de Imunoglobulina/imunologia
2.
PLoS Pathog ; 14(11): e1007415, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30427944

RESUMO

The family Arenaviridae comprises three genera, Mammarenavirus, Reptarenavirus and the most recently added Hartmanivirus. Arenaviruses have a bisegmented genome with ambisense coding strategy. For mammarenaviruses and reptarenaviruses the L segment encodes the Z protein (ZP) and the RNA-dependent RNA polymerase, and the S segment encodes the glycoprotein precursor and the nucleoprotein. Herein we report the full length genome and characterization of Haartman Institute snake virus-1 (HISV-1), the putative type species of hartmaniviruses. The L segment of HISV-1 lacks an open-reading frame for ZP, and our analysis of purified HISV-1 particles by SDS-PAGE and electron microscopy further support the lack of ZP. Since we originally identified HISV-1 in co-infection with a reptarenavirus, one could hypothesize that co-infecting reptarenavirus provides the ZP to complement HISV-1. However, we observed that co-infection does not markedly affect the amount of hartmanivirus or reptarenavirus RNA released from infected cells in vitro, indicating that HISV-1 does not benefit from reptarenavirus ZP. Furthermore, we succeeded in generating a pure HISV-1 isolate showing the virus to replicate without ZP. Immunofluorescence and ultrastructural studies demonstrate that, unlike reptarenaviruses, HISV-1 does not produce the intracellular inclusion bodies typical for the reptarenavirus-induced boid inclusion body disease (BIBD). While we observed HISV-1 to be slightly cytopathic for cultured boid cells, the histological and immunohistological investigation of HISV-positive snakes showed no evidence of a pathological effect. The histological analyses also revealed that hartmaniviruses, unlike reptarenaviruses, have a limited tissue tropism. By nucleic acid sequencing, de novo genome assembly, and phylogenetic analyses we identified additional four hartmanivirus species. Finally, we screened 71 individuals from a collection of snakes with BIBD by RT-PCR and found 44 to carry hartmaniviruses. These findings suggest that harmaniviruses are common in captive snake populations, but their relevance and pathogenic potential needs yet to be revealed.


Assuntos
Arenavirus/classificação , Arenavirus/genética , Animais , Arenaviridae/genética , Infecções por Arenaviridae/virologia , Sequência de Bases , Boidae/virologia , Linhagem Celular , Corpos de Inclusão Viral/patologia , Filogenia , RNA Viral/genética , RNA Polimerase Dependente de RNA/genética , Proteínas Virais/genética
3.
J Virol ; 91(21)2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28794044

RESUMO

In 2014 we observed a noticeable increase in the number of sudden deaths among green tree pythons (Morelia viridis). Pathological examination revealed the accumulation of mucoid material within the airways and lungs in association with enlargement of the entire lung. We performed a full necropsy and histological examination on 12 affected green tree pythons from 7 different breeders to characterize the pathogenesis of this mucinous pneumonia. By histology we could show a marked hyperplasia of the airway epithelium and of faveolar type II pneumocytes. Since routine microbiological tests failed to identify a causative agent, we studied lung tissue samples from a few diseased snakes by next-generation sequencing (NGS). From the NGS data we could assemble a piece of RNA genome whose sequence was <85% identical to that of nidoviruses previously identified in ball pythons and Indian pythons. We then employed reverse transcription-PCR to demonstrate the presence of the novel nidovirus in all diseased snakes. To attempt virus isolation, we established primary cultures of Morelia viridis liver and brain cells, which we inoculated with homogenates of lung tissue from infected individuals. Ultrastructural examination of concentrated cell culture supernatants showed the presence of nidovirus particles, and subsequent NGS analysis yielded the full genome of the novel virus Morelia viridis nidovirus (MVNV). We then generated an antibody against MVNV nucleoprotein, which we used alongside RNA in situ hybridization to demonstrate viral antigen and RNA in the affected lungs. This suggests that in natural infection MVNV damages the respiratory tract epithelium, which then results in epithelial hyperplasia, most likely as an exaggerated regenerative attempt in association with increased epithelial turnover.IMPORTANCE Novel nidoviruses associated with severe respiratory disease were fairly recently identified in ball pythons and Indian pythons. Herein we report on the isolation and identification of a further nidovirus from green tree pythons (Morelia viridis) with fatal pneumonia. We thoroughly characterized the pathological changes in the infected individuals and show that nidovirus infection is associated with marked epithelial proliferation in the respiratory tract. We speculate that this and the associated excess mucus production can lead to the animals' death by inhibiting normal gas exchange in the lungs. The virus was predominantly detected in the respiratory tract, which renders transmission via the respiratory route likely. Nidoviruses cause sudden outbreaks with high rates of mortality in breeding collections, and most affected snakes die without prior clinical signs. These findings, together with those of other groups, indicate that nidoviruses are a likely cause of severe pneumonia in pythons.

4.
J Gen Virol ; 96(Pt 7): 1664-75, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25787939

RESUMO

Puumala virus (PUUV, carried by Myodes glareolus) co-circulates with Seewis virus (SWSV, carried by Sorex araneus) in Finland. While PUUV causes 1000-3000 nephropathia epidemica (NE) cases annually, the pathogenicity of SWSV to man is unknown. To study the prevalence of SWSV antibodies in hantavirus fever-like patients' sera, we used recombinant SWSV nucleocapsid (N) protein as the antigen in ELISA, immunofluorescence assay (IFA) and immunoblotting. While characterizing the recombinant SWSV N protein, we observed that a polyclonal rabbit antiserum against PUUV N protein cross-reacted with SWSV N protein and vice versa. We initially screened 486 (450 PUUV-seronegative and 36 PUUV-seropositive) samples sent to Helsinki University Hospital Laboratory for PUUV serodiagnosis during 2002 and 2007 in an SWSV N protein IgG ELISA. In total, 4.2 % (19/450) of the PUUV-seronegative samples were reactive in the SWSV N protein IgG ELISA and none of the tested samples [43 PUUV-seronegative (weakly reactive in the SWSV IgG ELISA) and 15 random] were reactive in the SWSV N protein IgM ELISA. None of the IgG reactions could be confirmed by IFA or immunoblotting. Furthermore, among the 36 PUUV-seropositive samples three were reactive in SWSV N protein IgG and ten in SWSV N protein IgM ELISA. One PUUV-seropositive sample reacted with SWSV N protein in IFA and four in immunoblotting. Finally, we applied competitive ELISA to confirm that the observed reactivity was due to cross-reactivity rather than a true SWSV response. In conclusion, no evidence of SWSV infection was found among the 486 samples studied; however, we did demonstrate that PUUV antiserum cross-reacted with shrew-borne hantavirus N protein.


Assuntos
Anticorpos Antivirais/sangue , Reações Cruzadas , Infecções por Hantavirus/epidemiologia , Infecções por Hantavirus/imunologia , Orthohantavírus/imunologia , Virus Puumala/imunologia , Animais , Antígenos Virais/imunologia , Arvicolinae , Ensaio de Imunoadsorção Enzimática , Eulipotyphla , Feminino , Finlândia/epidemiologia , Técnica Indireta de Fluorescência para Anticorpo , Infecções por Hantavirus/virologia , Humanos , Immunoblotting , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Nucleocapsídeo/imunologia , Coelhos , Estudos Soroepidemiológicos , Musaranhos/virologia
5.
J Clin Microbiol ; 53(2): 636-40, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25520445

RESUMO

We recently introduced a homogeneous immunoassay based on time-resolved Förster resonance energy transfer (TR-FRET) elicited by fluorophore-labeled antigen and fluorophore-labeled protein L, bound by an immunoglobulin. As the first clinical application, we employ this approach (LFRET) in serodiagnosis of Puumala hantavirus (PUUV) infection. A reference panel containing serum from individuals with acute (n = 21) or past (n = 17) PUUV infection and from PUUV-seronegative individuals (n = 20) was used to define the parameters. The clinical assay performance was evaluated with a prospectively collected serum panel (panel 2; n = 153). Based on the results for panel 1, the threshold for positivity was set at a signal level that was 3-fold over background, while those with a signal <3-fold over the background level were considered PUUV seronegative. With panel 1, 20/21 acute- and 7/10 past-infection samples induced positive signals, compared to 0/20 seronegatives. With panel 2, a positive signal was obtained in 39/40 acute- and 4/10 past-infection samples, as opposed to 7/103 seronegatives. However, after IgG depletion, 58/61 acute-infection samples were LFRET positive, while all past-infection and seronegative samples were negative, corresponding to 100% specificity and 95% sensitivity in detection of acute PUUV infection. We demonstrate that the novel immunoassay is a promising tool for rapid serodiagnosis of acute Puumala virus infection.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Infecções por Hantavirus/diagnóstico , Virus Puumala/imunologia , Testes Sorológicos/métodos , Humanos , Estudos Prospectivos , Sensibilidade e Especificidade , Fatores de Tempo
6.
J Clin Microbiol ; 53(7): 2292-7, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25972427

RESUMO

In this study, we describe a competitive homogeneous immunoassay that makes use of Förster resonance energy transfer (FRET) in rapid detection of pathogen-specific antibodies. The assay principle is based on competition between a monoclonal antibody (MAb) and serum antibodies to a given antigen. In the assay, named competitive FRET immunoassay (CFRET-IA), the FRET signal is induced if MAb carrying a donor label binds to an acceptor-labeled antigen. Specific antibodies in serum compete for antigen binding, resulting in reduced FRET signal. The proof-of-principle for the assay was obtained using donor-labeled Puumala virus nucleocapsid protein (PUUV-N) and acceptor-labeled anti-PUUV-N MAb. The assay was evaluated by analyzing 329 clinical samples comprising 101 from individuals with acute PUUV infection, 42 from individuals with past infection, and 186 from individuals with PUUV-seronegative sera, and the results were compared to those of reference tests. The rapid serodiagnostic test we introduced herein performed with 100% sensitivity and 99% specificity for diagnosing acute hantavirus disease.


Assuntos
Anticorpos Antivirais/sangue , Infecções por Hantavirus/diagnóstico , Orthohantavírus/imunologia , Testes Sorológicos/métodos , Transferência Ressonante de Energia de Fluorescência , Humanos , Sensibilidade e Especificidade , Fatores de Tempo
7.
PLoS One ; 14(11): e0225851, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31770411

RESUMO

The diagnosis of celiac disease (CD) is currently based on serology and intestinal biopsy, with detection of anti-tissue transglutaminase (tTG) IgA antibodies recommended as the first-line test. Emphasizing the increasing importance of serological testing, new guidelines and evidence suggest basing the diagnosis solely on serology without confirmatory biopsy. Enzyme immunoassays (EIAs) are the established approach for anti-tTG antibody detection, with the existing point-of-care (POC) tests lacking sensitivity and/or specificity. Improved POC methods could help reduce the underdiagnosis and diagnostic delay of CD. We have previously developed rapid homogenous immunoassays based on time-resolved Förster resonance energy transfer (TR-FRET), and demonstrated their suitability in serodiagnostics with hanta- and Zika virus infections as models. In this study, we set out to establish a protein L -based TR-FRET assay (LFRET) for the detection of anti-tTG antibodies. We studied 74 patients with biopsy-confirmed CD and 70 healthy controls, with 1) the new tTG-LFRET assay, and for reference 2) a well-established EIA and 3) an existing commercial POC test. IgG depletion was employed to differentiate between anti-tTG IgA and IgG positivity. The sensitivity and specificity of the first-generation tTG-LFRET POC assay in detection of CD were 87.8% and 94.3%, respectively, in line with those of the reference POC test. The sensitivity and specificity of EIA were 95.9% and 91.9%, respectively. This study demonstrates the applicability of LFRET to serological diagnosis of autoimmune diseases in general and of CD in particular.


Assuntos
Autoanticorpos/sangue , Doença Celíaca/diagnóstico , Proteínas de Ligação ao GTP/imunologia , Imunoensaio/métodos , Transglutaminases/imunologia , Adulto , Estudos de Casos e Controles , Criança , Ensaio de Imunoadsorção Enzimática , Transferência Ressonante de Energia de Fluorescência , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Humanos , Sistemas Automatizados de Assistência Junto ao Leito , Proteína 2 Glutamina gama-Glutamiltransferase , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Sensibilidade e Especificidade , Transglutaminases/genética , Transglutaminases/metabolismo
8.
PLoS One ; 14(7): e0219474, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31335898

RESUMO

Zika virus (ZIKV) is a mosquito-borne pathogen causing a febrile illness with arthralgia, conjunctivitis and rash. The complications include Guillain-Barré syndrome, congenital brain and other abnormalities and miscarriage. The serodiagnosis of ZIKV infection is hampered by cross-reactivity with other members of the Flavivirus family, notably dengue (DENV). This report describes a novel serological platform for the diagnosis of ZIKV infection. The approach utilizes time-resolved Förster resonance energy transfer (TR-FRET) elicited by two chromophore-labeled proteins (a ZIKV antigen and a super-antigen) simultaneously binding to a given antibody molecule. The antigen used in the assay is ZIKV non-structural protein 1 (NS1) and the super-antigen is bacterial protein L. Three assay variants were developed: the first measuring all anti-ZIKV-NS1 antibodies (LFRET), the second measuring IgM and IgA (acute-LFRET) and the third measuring IgG (immunity-LFRET). The assays were evaluated with a panel of samples from clinical ZIKV cases in travelers (n = 25) and seronegative (n = 24) samples. DENV (n = 38), yellow fever (n = 16) and tick-borne-encephalitis (n = 20) seropositive samples were examined for assessment of flavivirus cross-reactivity. The diagnostic sensitivities of the respective LFRET assays were 92%, 100% and 83%, and the diagnostic specificities 88%, 95% and 100% for LFRET, acute-LFRET and immunity-LFRET. Furthermore, we evaluated the assays against a widely-used commercial ELISA. In conclusion, the new FRET-based serological approaches based on NS1 protein are applicable to diagnosing zika virus infections in travelers and differentiating them from other flavivirus infections.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Imunoensaio/métodos , Testes Sorológicos , Infecção por Zika virus/sangue , Infecção por Zika virus/diagnóstico , Zika virus/isolamento & purificação , Estudos de Coortes , Ensaio de Imunoadsorção Enzimática , Humanos , Imunoglobulinas/metabolismo , Fatores de Tempo
9.
Viruses ; 11(9)2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31480594

RESUMO

Rapid point-of-care testing is a megatrend in infectious disease diagnosis. We have introduced a homogeneous immunoassay concept, which is based on the simultaneous binding of antigen and protein L to a given immunoglobulin molecule. The complex formation is detected utilizing time-resolved Förster resonance energy transfer between antigen-attached donor and acceptor-labeled protein L, hence the name LFRET. Here, we demonstrate that urine can be used as a sample matrix in LFRET-based serodiagnostics. We studied urine samples collected during the hospitalization and recovery of patients with acute Puumala orthohantavirus (PUUV) infection. We compared PUUV antibody-specific LFRET signals in urine to those in plasma, and found excellent correlation in the test outcomes The LFRET test from urine was positive in 40/40 patients with acute PUUV infection. PUUV causes a mild form of hemorrhagic fever with renal syndrome, characterized by acute kidney injury and proteinuria. Immunofluorescence and western blotting demonstrated PUUV-IgG and -IgA in urine, however, the presence of intact immunoglobulins did not fully explain the LFRET signals. We purified free light chains (FLCs) from both urine and serum of healthy volunteers and patients with acute PUUV infection, and verified the presence of antigen-specific FLCs. Antigen-specific FLCs provide a new means for non-invasive antibody detection and disease diagnosis.


Assuntos
Infecções por Hantavirus/diagnóstico , Cadeias Leves de Imunoglobulina/urina , Orthohantavírus/isolamento & purificação , Testes Sorológicos/métodos , Anticorpos Antivirais/urina , Proteínas do Capsídeo/imunologia , Orthohantavírus/imunologia , Infecções por Hantavirus/urina , Febre Hemorrágica com Síndrome Renal/diagnóstico , Febre Hemorrágica com Síndrome Renal/urina , Humanos , Imunoensaio , Imunoglobulina A/urina , Imunoglobulina G/urina , Cadeias Leves de Imunoglobulina/imunologia , Testes Imediatos , Virus Puumala/imunologia , Virus Puumala/isolamento & purificação , Proteínas do Core Viral/imunologia
10.
Infect Ecol Epidemiol ; 7(1): 1408360, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-30788065

RESUMO

Introduction: Migratory birds act as hosts for a number of zoonotic viruses, and have the ability to disperse these viruses to distant geographic locations. Coronaviruses (CoVs) represent a family of zoonotic viruses with wide variety of animal hosts, including birds and humans. The infections caused by coronaviruses vary from mild to severe, depending on the viral species and the host. Since the coronaviruses exhibit extraordinary large RNA genome, also the rate of homologous recombination is high, which in turn contributes to the genetic diversity and interspecies host-switches of CoVs. The emergence of novel CoVs has been rich during the last decades, and wild birds seem to serve as reservoirs for a variety of CoV strains. We examined the CoVs circulating among wild birds in Finland. Materials and methods: Samples (cloacal swab, tracheal swab, oropharyngeal swab, or tissue) representing 61 bird species were collected during 2010-2013, and examined by RT-PCR targeting the RdRp gene for the presence of CoV RNA. Results: Altogether 51/939 (5.4%) of the examined birds were found positive by RT-PCR. Diverse gamma- and deltacoronavirus sequences were detected. Discussion: Gamma- and deltacoronaviruses circulate among wild birds in Finland. The number of CoV-positive birds detected each year varies greatly.

11.
PLoS One ; 9(9): e106432, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25181527

RESUMO

Chelated lanthanides such as europium (Eu) have uniquely long fluorescence emission half-lives permitting their use in time-resolved fluorescence (TRF) assays. In Förster resonance energy transfer (FRET) a donor fluorophore transfers its emission energy to an acceptor fluorophore if in sufficiently close proximity. The use of time-resolved (TR) FRET minimizes the autofluorescence of molecules present in biological samples. In this report, we describe a homogenous immunoassay prototype utilizing TR-FRET for detection of antibodies in solution. The assay is based on labeled protein L, a bacterial protein that binds to immunoglobulin (Ig) light chain, and labeled antigen, which upon association with the same Ig molecule produce a TR-FRET active complex. We show that the approach is functional and can be utilized for both mono- and polyvalent antigens. We also compare the assay performance to that of another homogenous TR-FRET immunoassay reported earlier. This novel assay may have wide utility in infectious disease point-of-care diagnostics.


Assuntos
Proteínas de Bactérias/imunologia , Proteínas de Ligação a DNA/imunologia , Transferência Ressonante de Energia de Fluorescência/métodos , Testes Imunológicos/métodos , Anticorpos Antibacterianos/imunologia , Anticorpos Monoclonais/imunologia , Antígenos de Bactérias/imunologia , Carbocianinas/metabolismo , Ensaio de Imunoadsorção Enzimática , Európio/metabolismo , Humanos , Imunoensaio , Fragmentos Fab das Imunoglobulinas/metabolismo , Imunoglobulina G/imunologia , Limite de Detecção , Ligação Proteica , Fatores de Tempo
12.
J Microbiol Methods ; 100: 27-31, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24594410

RESUMO

Central nervous system (CNS) infections have multiple potential causative agents for which simultaneous pathogen screening can provide a useful tool. This study evaluated a multiplexed microarray for the simultaneous detection of antibodies against CNS pathogens. The performance of selected microarray antigens for the detection of IgG antibodies against herpes simplex virus 1 and 2 (HSV-1 and HSV-2), varicella-zoster virus (VZV), adenovirus, Mycoplasma pneumoniae and Borrelia burgdorferi sensu lato, was evaluated using serum sample panels tested with reference assays used in a routine diagnostic laboratory. The microarray sensitivity for HSV-1, HSV-2, VZV, adenovirus and M. pneumonia ranged from 77% to 100%, and the specificity ranged from 74% to 97%. Very variable sensitivities and specificities were found for borrelial antigens of three different VlsE protein IR(6) peptide variants (IR6p1, IR6p2, IR6p4) and three recombinant decorin binding proteins A (DbpA; DbpAIa, DbpA91, DbpAG40). For single antigens, good specificity was shown for antigens of IR6p4 and DbpAIa (96%), while DbpA91, IR6p1 and IR6p2 were moderately specific (88-92%). The analytical sensitivity of the microarray was dependent on the borrelial IgG concentration of the specimen. The overall performance and technical features of the platform showed that the platform supports both recombinant proteins, whole viruses and peptides as antigens. This study showed diagnostic potential for all six CNS pathogens, including Borrelia burgdorferi sensu lato, using glutaraldehyde based microarray, and further highlighted the importance of careful antigen selection and the requirement for the use of multiple borrelial antigens in order to increase specificity without a major lack of sensitivity.


Assuntos
Anticorpos/sangue , Infecções do Sistema Nervoso Central/diagnóstico , Testes Imunológicos/métodos , Análise em Microsséries/métodos , Análise Serial de Proteínas/métodos , Humanos , Imunoglobulina G/sangue , Doença de Lyme/diagnóstico , Infecções por Mycoplasma/diagnóstico , Sensibilidade e Especificidade , Viroses/diagnóstico
13.
Infect Genet Evol ; 27: 51-61, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24997334

RESUMO

Hantaviruses are emerging viruses carried by rodents, soricomorphs (shrews and moles) and bats. In Finland, Puumala virus (PUUV) was for years the only hantavirus detected. In 2009, however, Seewis virus (SWSV) was reported from archival common shrew (Sorex araneus) samples collected in 1982 in Finland. To elucidate the diversity of hantaviruses in soricomorphs in Finland, 180 individuals were screened, representing seven species captured from 2001 to 2012: hantavirus RNA was screened using RT-PCR, and hantaviral antigen using immunoblotting with polyclonal antibodies raised against truncated SWSV nucleocapsid protein. The overall hantavirus RNA prevalence was 14% (26/180), antigen could be demonstrated in 9 of 20 SWSV RT-PCR positive common shrews. Genetic analyses revealed that four soricomorph-borne hantaviruses circulate in Finland, including Boginia virus (BOGV) in water shrew (Neomys fodiens) and Asikkala virus (ASIV) in pygmy shrew (Sorex minutus). Interestingly, on two study sites, common shrews harbored strains of two different hantaviruses: Seewis virus and a new distinct, genetically distant (identity 57% at amino acid level) virus (Altai-like virus) which clusters together with viruses in the basal phylogroup I of hantaviruses with 62-67% identity at amino acid level. This is the first evidence of coexistence of two clearly distinct hantavirus species circulating simultaneously in one host species population. The findings suggest an ancient host-switching event from a yet unknown host to S. araneus. In addition, phylogenetic analyses of partial S and M segment sequences showed that SWSV in Finland represents a unique genotype in Europe.


Assuntos
Eulipotyphla/virologia , Orthohantavírus/classificação , Animais , Citocromos b/genética , Eulipotyphla/genética , Finlândia , Genoma Viral , Geografia , Orthohantavírus/genética , Infecções por Hantavirus/virologia , Filogenia , Musaranhos/genética , Musaranhos/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA