Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
J Neuroinflammation ; 20(1): 192, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37608305

RESUMO

Smoke from wildland fires has been shown to produce neuroinflammation in preclinical models, characterized by neural infiltrations of neutrophils and monocytes, as well as altered neurovascular endothelial phenotypes. To address the longevity of such outcomes, the present study examined the temporal dynamics of neuroinflammation and metabolomics after inhalation exposures from biomass-derived smoke. 2-month-old female C57BL/6 J mice were exposed to wood smoke every other day for 2 weeks at an average exposure concentration of 0.5 mg/m3. Subsequent serial euthanasia occurred at 1-, 3-, 7-, 14-, and 28-day post-exposure. Flow cytometry of right hemispheres revealed two endothelial populations of CD31Hi and CD31Med expressors, with wood smoke inhalation causing an increased proportion of CD31Hi. These populations of CD31Hi and CD31Med were associated with an anti-inflammatory and pro-inflammatory response, respectively, and their inflammatory profiles were largely resolved by the 28-day mark. However, activated microglial populations (CD11b+/CD45low) remained higher in wood smoke-exposed mice than controls at day 28. Infiltrating neutrophil populations decreased to levels below controls by day 28. However, the MHC-II expression of the peripheral immune infiltrate remained high, and the population of neutrophils retained an increased expression of CD45, Ly6C, and MHC-II. Utilizing an unbiased approach examining the metabolomic alterations, we observed notable hippocampal perturbations in neurotransmitter and signaling molecules, such as glutamate, quinolinic acid, and 5-α-dihydroprogesterone. Utilizing a targeted panel designed to explore the aging-associated NAD+ metabolic pathway, wood smoke exposure drove fluctuations and compensations across the 28-day time course, ending with decreased hippocampal NAD+ abundance on day 28. Summarily, these results indicate a highly dynamic neuroinflammatory environment, with potential resolution extending past 28 days, the implications of which may include long-term behavioral changes, systemic and neurological sequalae directly associated with wildfire smoke exposure.


Assuntos
NAD , Doenças Neuroinflamatórias , Feminino , Animais , Camundongos , Camundongos Endogâmicos C57BL , Biomassa , Hipocampo , Ácido Glutâmico , Metabolômica , Fumaça/efeitos adversos
2.
Respir Res ; 24(1): 138, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37231407

RESUMO

Electronic cigarette (Ecig) use has become more common, gaining increasing acceptance as a safer alternative to tobacco smoking. However, the 2019 outbreak of Ecig and Vaping-Associated Lung Injury (EVALI) alerted the community to the potential for incorporation of deleterious ingredients such as vitamin E acetate into products without adequate safety testing. Understanding Ecig induced molecular changes in the lung and systemically can provide a path to safety assessment and protect consumers from unsafe formulations. While vitamin E acetate has been largely removed from commercial and illicit products, many Ecig products contain additives that remain largely uncharacterized. In this study, we determined the lung-specific effects as well as systemic immune effects in response to exposure to a common Ecig base, propylene glycol and vegetable glycerin (PGVG), with and without a 1% addition of phytol, a diterpene alcohol that has been found in commercial products. We exposed animals to PGVG with and without phytol and assessed metabolite, lipid, and transcriptional markers in the lung. We found both lung-specific as well as systemic effects in immune parameters, metabolites, and lipids. Phytol drove modest changes in lung function and increased splenic CD4 T cell populations. We also conducted multi-omic data integration to better understand early complex pulmonary responses, highlighting a central enhancement of acetylcholine responses and downregulation of palmitic acid connected with conventional flow cytometric assessments of lung, systemic inflammation, and pulmonary function. Our results demonstrate that Ecig exposure not only leads to changes in pulmonary function but also affects systemic immune and metabolic parameters.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Animais , Multiômica , Pulmão , Glicerol , Vitamina E , Propilenoglicol , Acetatos
3.
Inhal Toxicol ; 35(3-4): 86-100, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35037817

RESUMO

OBJECTIVE: Environmental exposures exacerbate age-related pathologies, such as cardiovascular and neurodegenerative diseases. Nanoparticulates, and specifically carbon nanomaterials, are a fast-growing contributor to the category of inhalable pollutants, whose risks to health are only now being unraveled. The current study assessed the exacerbating effect of age on multiwalled-carbon nanotube (MWCNT) exposure in young and old C57BL/6 and ApoE-/- mice. MATERIALS AND METHODS: Female C57BL/6 and apolipoprotein E-deficient (ApoE-/-) mice, aged 8 weeks and 15 months, were exposed to 0 or 40 µg MWCNT via oropharyngeal aspiration. Pulmonary inflammation, inflammatory bioactivity of serum, and neurometabolic changes were assessed at 24 h post-exposure. RESULTS: Pulmonary neutrophil infiltration was induced by MWCNT in bronchoalveolar lavage fluid in both C57BL/6 and ApoE-/-. Macrophage counts decreased with MWCNT exposure in ApoE-/- mice but were unaffected by exposure in C57BL/6 mice. Older mice appeared to have greater MWCNT-induced total protein in lavage fluid. BALF cytokines and chemokines were elevated with MWCNT exposure, but CCL2, CXCL1, and CXCL10 showed reduced responses to MWCNT in older mice. However, no significant serum inflammatory bioactivity was detected. Cerebellar metabolic changes in response to MWCNT were modest, but age and strain significantly influenced metabolite profiles assessed. ApoE-/- mice and older mice exhibited less robust metabolite changes in response to exposure, suggesting a reduced health reserve. CONCLUSIONS: Age influences the pulmonary and neurological responses to short-term MWCNT exposure. However, with only the model of moderate aging (15 months) in this study, the responses appeared modest compared to inhaled toxicant impacts in more advanced aging models.


Assuntos
Nanotubos de Carbono , Feminino , Animais , Camundongos , Nanotubos de Carbono/toxicidade , Camundongos Endogâmicos C57BL , Pulmão , Líquido da Lavagem Broncoalveolar , Inflamação/patologia , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Apolipoproteínas E/farmacologia , Apolipoproteínas/metabolismo , Apolipoproteínas/farmacologia , Exposição por Inalação/efeitos adversos
4.
Environ Sci Technol ; 55(14): 9949-9957, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34235927

RESUMO

Particulate matter (PM) presents an environmental health risk for communities residing close to uranium (U) mine sites. However, the role of the particulate form of U on its cellular toxicity is still poorly understood. Here, we investigated the cellular uptake and toxicity of C-rich U-bearing particles as a model organic particulate containing uranyl citrate over a range of environmentally relevant concentrations of U (0-445 µM). The cytotoxicity of C-rich U-bearing particles in human epithelial cells (A549) was U-dose-dependent. No cytotoxic effects were detected with soluble U doses. Carbon-rich U-bearing particles with a wide size distribution (<10 µm) presented 2.7 times higher U uptake into cells than the particles with a narrow size distribution (<1 µm) at 100 µM U concentration. TEM-EDS analysis identified the intracellular translocation of clusters of C-rich U-bearing particles. The accumulation of C-rich U-bearing particles induced DNA damage and cytotoxicity as indicated by the increased phosphorylation of the histone H2AX and cell death, respectively. These findings reveal the toxicity of the particulate form of U under environmentally relevant heterogeneous size distributions. Our study opens new avenues for future investigations on the health impacts resulting from environmental exposures to the particulate form of U near mine sites.


Assuntos
Urânio , Carbono , Carvão Mineral , Poeira/análise , Humanos , Material Particulado/análise , Material Particulado/toxicidade , Urânio/análise , Urânio/toxicidade
5.
Part Fibre Toxicol ; 18(1): 34, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34496918

RESUMO

BACKGROUND: Multiwalled carbon nanotubes (MWCNT) are an increasingly utilized engineered nanomaterial that pose the potential for significant risk of exposure-related health outcomes. The mechanism(s) underlying MWCNT-induced toxicity to extrapulmonary sites are still being defined. MWCNT-induced serum-borne bioactivity appears to dysregulate systemic endothelial cell function. The serum compositional changes after MWCNT exposure have been identified as a surge of fragmented endogenous peptides, likely derived from matrix metalloproteinase (MMP) activity. In the present study, we utilize a broad-spectrum MMP inhibitor, Marimastat, along with a previously described oropharyngeal aspiration model of MWCNT administration to investigate the role of MMPs in MWCNT-derived serum peptide generation and endothelial bioactivity. RESULTS: C57BL/6 mice were treated with Marimastat or vehicle by oropharyngeal aspiration 1 h prior to MWCNT treatment. Pulmonary neutrophil infiltration and total bronchoalveolar lavage fluid protein increased independent of MMP blockade. The lung cytokine profile similarly increased following MWCNT exposure for major inflammatory markers (IL-1ß, IL-6, and TNF-α), with minimal impact from MMP inhibition. However, serum peptidomic analysis revealed differential peptide compositional profiles, with MMP blockade abrogating MWCNT-derived serum peptide fragments. The serum, in turn, exhibited differential potency in terms of inflammatory bioactivity when incubated with primary murine cerebrovascular endothelial cells. Serum from MWCNT-treated mice led to inflammatory responses in endothelial cells that were significantly blunted with serum from Marimastat-treated mice. CONCLUSIONS: Thus, MWCNT exposure induced pulmonary inflammation that was largely independent of MMP activity but generated circulating bioactive peptides through predominantly MMP-dependent pathways. This MWCNT-induced lung-derived bioactivity caused pathological consequences of endothelial inflammation and barrier disruption.


Assuntos
Nanotubos de Carbono , Pneumonia , Animais , Líquido da Lavagem Broncoalveolar , Células Endoteliais , Ácidos Hidroxâmicos , Pulmão , Inibidores de Metaloproteinases de Matriz/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Nanotubos de Carbono/toxicidade , Pneumonia/induzido quimicamente
6.
J Toxicol Environ Health A ; 84(12): 503-517, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-33682625

RESUMO

The Southwestern United States has a legacy of industrial mining due to the presence of rich mineral ore deposits. The relationship between environmental inhaled particulate matter (PM) exposures and neurological outcomes within an autoimmune context is understudied. The aim of this study was to compare two regionally-relevant dusts from high-priority abandoned mine-sites, Claim 28 PM, from Blue Gap Tachee, AZ and St. Anthony mine PM, from the Pueblo of Laguna, NM and to expose autoimmune-prone mice (NZBWF1/J). Mice were randomly assigned to one of three groups (n = 8/group): DM (dispersion media, control), Claim 28 PM, or St. Anthony PM, subjected to oropharyngeal aspiration of (100 µg/50 µl), once per week for a total of 4 consecutive doses. A battery of immunological and neurological endpoints was assessed at 24 weeks of age including: bronchoalveolar lavage cell counts, lung gene expression, brain immunohistochemistry, behavioral tasks and serum autoimmune biomarkers. Bronchoalveolar lavage results demonstrated a significant increase in number of polymorphonuclear neutrophils following Claim 28 and St. Anthony mine PM aspiration. Lung mRNA expression showed significant upregulation in CCL-2 and IL-1ß following St. Anthony mine PM aspiration. In addition, neuroinflammation was present in both Claim 28 and St. Anthony mine-site derived PM exposure groups. Behavioral tasks resulted in significant deficits as determined by Y-maze new arm frequency following Claim 28 aspiration. Neutrophil elastase was significantly upregulated in the St. Anthony mine exposure group. Interestingly, there were no significant changes in serum autoantigens suggesting systemic inflammatory effects may be mediated through other molecular mechanisms following low-dose PM exposures.


Assuntos
Poluentes Atmosféricos/toxicidade , Poeira/análise , Encefalite/fisiopatologia , Aprendizagem/efeitos dos fármacos , Memória/efeitos dos fármacos , Material Particulado/toxicidade , Pneumonia/fisiopatologia , Animais , Arizona , Doenças Autoimunes/etiologia , Biomarcadores/metabolismo , Modelos Animais de Doenças , Poeira/imunologia , Encefalite/induzido quimicamente , Feminino , Exposição por Inalação/efeitos adversos , Camundongos , Mineração , New Mexico , Tamanho da Partícula , Pneumonia/induzido quimicamente , Distribuição Aleatória
7.
J Toxicol Environ Health A ; 84(1): 31-48, 2021 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-33050837

RESUMO

Thousands of abandoned uranium mines (AUMs) exist in the western United States. Due to improper remediation, windblown dusts generated from AUMs are of significant community concern. A mobile inhalation lab was sited near an AUM of high community concern ("Claim 28") with three primary objectives: to (1) determine the composition of the regional ambient particulate matter (PM), (2) assess meteorological characteristics (wind speed and direction), and (3) assess immunological and physiological responses of mice after exposures to concentrated ambient PM (or CAPs). C57BL/6 and apolipoprotein E-null (ApoE-/-) mice were exposed to CAPs in AirCARE1 located approximately 1 km to the SW of Claim 28, for 1 or 28 days for 4 hr/day at approximately 80 µg/m3 CAPs. Bronchoalveolar lavage fluid (BALF) analysis revealed a significant influx of neutrophils after a single-day exposure in C57BL/6 mice (average PM2.5 concentration = 68 µg/m3). Lungs from mice exposed for 1 day exhibited modest increases in Tnfa and Tgfb mRNA levels in the CAPs exposure group compared to filtered air (FA). Lungs from mice exposed for 28 days exhibited reduced Tgfb (C57BL/6) and Tnfa (ApoE-/-) mRNA levels. Wind direction was typically moving from SW to NE (away from the community) and, while detectable in all samples, uranium concentrations in the PM2.5 fraction were not markedly different from published-reported values. Overall, exposure to CAPs in the region of the Blue GAP Tachee's Claim-28 uranium mine demonstrated little evidence of overt pulmonary injury or inflammation or ambient air contamination attributed to uranium or vanadium.


Assuntos
Poluentes Atmosféricos/toxicidade , Exposição por Inalação/efeitos adversos , Mineração , Material Particulado/toxicidade , Urânio , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Testes de Toxicidade Aguda , Testes de Toxicidade Subcrônica
8.
Part Fibre Toxicol ; 17(1): 29, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32611356

RESUMO

BACKGROUND: Commercial uranium mining on the Navajo Nation has subjected communities on tribal lands in the Southwestern United States to exposures from residual environmental contamination. Vascular health effects from these ongoing exposures are an active area of study. There is an association between residential mine-site proximity and circulating biomarkers in residents, however, the contribution of mine-site derived wind-blown dusts on vascular and other health outcomes is unknown. To assess neurovascular effects of mine-site derived dusts, we exposed mice using a novel exposure paradigm, the AirCARE1 mobile inhalation laboratory, located 2 km from an abandoned uranium mine, Claim 28 in Blue Gap Tachee, AZ. Mice were exposed to filtered air (FA) (n = 6) or concentrated ambient particulate matter (CAPs) (n = 5) for 2 wks for 4 h per day. RESULTS: To assess miRNA differential expression in cultured mouse cerebrovascular cells following particulate matter (PM) exposure (average: 96.6 ± 60.4 µg/m3 for all 4 h exposures), the serum cumulative inflammatory potential (SCIP) assay was employed. MiRNA sequencing was then performed in cultured mouse cerebrovascular endothelial cells (mCECs) to evaluate transcriptional changes. Results indicated 27 highly differentially expressed (p < 0.01) murine miRNAs, as measured in the SCIP assay. Gene ontology (GO) pathway analysis revealed notable alterations in GO enrichment related to the cytoplasm, protein binding and the cytosol, while significant KEGG pathways involved pathways in cancer, axon guidance and Wnt signaling. Expression of these 27 identified, differentially expressed murine miRNAs were then evaluated in the serum. Nine of these miRNAs (~ 30%) were significantly altered in the serum and 8 of those miRNAs demonstrated the same directional change (either upregulation or downregulation) as cellular miRNAs, as measured in the SCIP assay. Significantly upregulated miRNAs in the CAPs exposure group included miRNAs in the let-7a family. Overexpression of mmu-let-7a via transfection experiments, suggested that this miRNA may mediate mCEC barrier integrity following dust exposure. CONCLUSIONS: Our data suggest that mCEC miRNAs as measured in the SCIP assay show similarity to serum-borne miRNAs, as approximately 30% of highly differentially expressed cellular miRNAs in the SCIP assay were also found in the serum. While translocation of miRNAs via exosomes or an alternative mechanism is certainly possible, other yet-to-be-identified factors in the serum may be responsible for significant miRNA differential expression in endothelium following inhaled exposures. Additionally, the most highly upregulated murine miRNAs in the CAPs exposure group were in the let-7a family. These miRNAs play a prominent role in cell growth and differentiation and based on our transfection experiments, mmu-let-7a may contribute to cerebrovascular mCEC alterations following inhaled dust exposure.


Assuntos
Poluentes Atmosféricos/toxicidade , Material Particulado/toxicidade , Animais , Biomarcadores/sangue , Diferenciação Celular , Proliferação de Células , Endotélio , Exposição por Inalação , Camundongos , MicroRNAs , Sudoeste dos Estados Unidos , Urânio
9.
Proc Natl Acad Sci U S A ; 114(10): E1968-E1976, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28223486

RESUMO

Pulmonary exposure to multiwalled carbon nanotubes (MWCNTs) causes indirect systemic inflammation through unknown pathways. MWCNTs translocate only minimally from the lungs into the systemic circulation, suggesting that extrapulmonary toxicity may be caused indirectly by lung-derived factors entering the circulation. To assess a role for MWCNT-induced circulating factors in driving neuroinflammatory outcomes, mice were acutely exposed to MWCNTs (10 or 40 µg/mouse) via oropharyngeal aspiration. At 4 h after MWCNT exposure, broad disruption of the blood-brain barrier (BBB) was observed across the capillary bed with the small molecule fluorescein, concomitant with reactive astrocytosis. However, pronounced BBB permeation was noted, with frank albumin leakage around larger vessels (>10 µm), overlain by a dose-dependent astroglial scar-like formation and recruitment of phagocytic microglia. As affirmed by elevated inflammatory marker transcription, MWCNT-induced BBB disruption and neuroinflammation were abrogated by pretreatment with the rho kinase inhibitor fasudil. Serum from MWCNT-exposed mice induced expression of adhesion molecules in primary murine cerebrovascular endothelial cells and, in a wound-healing in vitro assay, impaired cell motility and cytokinesis. Serum thrombospondin-1 level was significantly increased after MWCNT exposure, and mice lacking the endogenous receptor CD36 were protected from the neuroinflammatory and BBB permeability effects of MWCNTs. In conclusion, acute pulmonary exposure to MWCNTs causes neuroinflammatory responses that are dependent on the disruption of BBB integrity.


Assuntos
1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , Barreira Hematoencefálica/efeitos dos fármacos , Portadores de Fármacos/efeitos adversos , Encefalite/prevenção & controle , Nanotubos de Carbono/efeitos adversos , Inibidores de Proteínas Quinases/farmacologia , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/farmacologia , Administração por Inalação , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Astrócitos/patologia , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Antígenos CD36/deficiência , Antígenos CD36/genética , Movimento Celular/efeitos dos fármacos , Encefalite/induzido quimicamente , Encefalite/genética , Encefalite/patologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Fluoresceína/farmacocinética , Corantes Fluorescentes/farmacocinética , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Trombospondina 1/genética , Trombospondina 1/metabolismo , Quinases Associadas a rho/genética
10.
Toxicol Appl Pharmacol ; 305: 40-45, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27286659

RESUMO

Ozone (O3)-related cardiorespiratory effects are a growing public health concern. Ground level O3 can exacerbate pre-existing respiratory conditions; however, research regarding therapeutic interventions to reduce O3-induced lung injury is limited. In patients with chronic obstructive pulmonary disease, hypoxia-associated pulmonary hypertension (HPH) is a frequent comorbidity that is difficult to treat clinically, yet associated with increased mortality and frequency of exacerbations. In this study, we hypothesized that established HPH would confer vulnerability to acute O3 pulmonary toxicity. Additionally, we tested whether improvement of pulmonary endothelial barrier integrity via rho-kinase inhibition could mitigate pulmonary inflammation and injury. To determine if O3 exacerbated HPH, male C57BL/6 mice were subject to either 3 weeks continuous normoxia (20.9% O2) or hypoxia (10.0% O2), followed by a 4-h exposure to either 1ppm O3 or filtered air (FA). As an additional experimental intervention fasudil (20mg/kg) was administered intraperitoneally prior to and after O3 exposures. As expected, hypoxia significantly increased right ventricular pressure and hypertrophy. O3 exposure in normoxic mice caused lung inflammation but not injury, as indicated by increased cellularity and edema in the lung. However, in hypoxic mice, O3 exposure led to increased inflammation and edema, along with a profound increase in airway hyperresponsiveness to methacholine. Fasudil administration resulted in reduced O3-induced lung injury via the enhancement of pulmonary endothelial barrier integrity. These results indicate that increased pulmonary vascular pressure may enhance lung injury, inflammation and edema when exposed to pollutants, and that enhancement of pulmonary endothelial barrier integrity may alleviate such vulnerability.


Assuntos
1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , Poluentes Atmosféricos/toxicidade , Lesão Pulmonar/tratamento farmacológico , Ozônio/toxicidade , Inibidores de Proteínas Quinases/uso terapêutico , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/farmacologia , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/uso terapêutico , Animais , Hiper-Reatividade Brônquica/induzido quimicamente , Hiper-Reatividade Brônquica/tratamento farmacológico , Hiper-Reatividade Brônquica/patologia , Hiper-Reatividade Brônquica/fisiopatologia , Líquido da Lavagem Broncoalveolar/citologia , Contagem de Células , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/patologia , Hipertensão Pulmonar/fisiopatologia , Hipertrofia Ventricular Direita/induzido quimicamente , Hipertrofia Ventricular Direita/tratamento farmacológico , Hipertrofia Ventricular Direita/patologia , Hipertrofia Ventricular Direita/fisiopatologia , Hipóxia/complicações , Hipóxia/tratamento farmacológico , Hipóxia/patologia , Hipóxia/fisiopatologia , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/fisiopatologia , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/patologia , Lesão Pulmonar/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Tamanho do Órgão/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Função Ventricular Direita/efeitos dos fármacos , Pressão Ventricular/efeitos dos fármacos , Quinases Associadas a rho/antagonistas & inibidores
11.
Part Fibre Toxicol ; 13(1): 64, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27906023

RESUMO

BACKGROUND: Deleterious consequences of exposure to traffic emissions may derive from interactions between carbonaceous particulate matter (PM) and gaseous components in a manner that is dependent on the surface area or complexity of the particles. To determine the validity of this hypothesis, we examined pulmonary and neurological inflammatory outcomes in C57BL/6 and apolipoprotein E knockout (ApoE-/-) male mice after acute and chronic exposure to vehicle engine-derived particulate matter, generated as ultrafine (UFP) and fine (FP) sizes, with additional exposures using UFP or FP combined with gaseous copollutants derived from fresh gasoline and diesel emissions, labeled as UFP + G and FP + G. RESULTS: The UFP and UFP + G exposure groups resulted in the most profound pulmonary and neuroinflammatory effects. Phagocytosis of UFP + G particles via resident alveolar macrophages was substantial in both mouse strains, particularly after chronic exposure, with concurrent increased proinflammatory cytokine expression of CXCL1 and TNFα in the bronchial lavage fluid. In the acute exposure paradigm, only UFP and UFP + G induced significant changes in pulmonary inflammation and only in the ApoE-/- animals. Similarly, acute exposure to UFP and UFP + G increased the expression of several cytokines in the hippocampus of ApoE-/- mice including Il-1ß, IL-6, Tgf-ß and Tnf-α and in the hippocampus of C57BL/6 mice including Ccl5, Cxcl1, Il-1ß, and Tnf-α. Interestingly, Il-6 and Tgf-ß expression were decreased in the C57BL/6 hippocampus after acute exposure. Chronic exposure to UFP + G increased expression of Ccl5, Cxcl1, Il-6, and Tgf-ß in the ApoE-/- hippocampus, but this effect was minimal in the C57BL/6 mice, suggesting compensatory mechanisms to manage neuroinflammation in this strain. CONCLUSIONS: Inflammatory responses the lung and brain were most substantial in ApoE-/- animals exposed to UFP + G, suggesting that the surface area-dependent interaction of gases and particles is an important determinant of toxic responses. As such, freshly generated UFP, in the presence of combustion-derived gas phase pollutants, may be a greater health hazard than would be predicted from PM concentration, alone, lending support for epidemiological findings of adverse neurological outcomes associated with roadway proximity.


Assuntos
Inflamação/induzido quimicamente , Pulmão/efeitos dos fármacos , Emissões de Veículos/toxicidade , Animais , Apolipoproteínas E/genética , Peso Corporal , Líquido da Lavagem Broncoalveolar , Citocinas/biossíntese , Exposição por Inalação , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Propriedades de Superfície
12.
J Asthma ; 51(5): 459-66, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24447284

RESUMO

OBJECTIVE: Adipose tissue produces adiponectin, an anti-inflammatory protein. High systemic total adiponectin is associated with a low risk for incident asthma but the association with lung adiponectin is not known. Our objective was to evaluate the association between sputum total adiponectin and asthma. METHODS: This case-control study included 44 cases with objectively-confirmed asthma and an equal number of body mass index (BMI) and sex-matched controls. Serum and sputum adiponectin were estimated by ELISA and Western Blot technique, respectively. While Fisher's exact test, t-test and Spearman's correlations were used for univariate analyses, Spearman and regression analyses were performed for multivariable analyses. RESULTS: While high-molecular-weight adiponectin was the dominant isoform in serum, medium-molecular-weight isoform was dominant in sputum. Sputum total adiponectin was not correlated with serum adiponectin or BMI. Sputum total adiponectin was lower among asthmatics than controls (p = 0.03), although individual sputum isoforms were not similarly associated. High sputum total adiponectin was associated with lower odds for asthma (OR 0.33, 95% C.I. 0.12, 0.91), even after adjustment for systemic adiposity measures including serum adiponectin. CONCLUSIONS: High sputum total adiponectin predicted lower odds for asthma, even after adjustment for serum adiponectin. Although not studied, it is possible that pharmacological modulation of sputum adiponectin may suggest new ways to prevent and/or treat asthma.


Assuntos
Adiponectina/análise , Asma/epidemiologia , Escarro/química , Adiponectina/biossíntese , Adulto , Asma/metabolismo , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Valor Preditivo dos Testes
13.
Environ Health Perspect ; 132(4): 47005, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38598326

RESUMO

BACKGROUND: Global plastic use has consistently increased over the past century with several different types of plastics now being produced. Much of these plastics end up in oceans or landfills leading to a substantial accumulation of plastics in the environment. Plastic debris slowly degrades into microplastics (MPs) that can ultimately be inhaled or ingested by both animals and humans. A growing body of evidence indicates that MPs can cross the gut barrier and enter into the lymphatic and systemic circulation leading to accumulation in tissues such as the lungs, liver, kidney, and brain. The impacts of mixed MPs exposure on tissue function through metabolism remains largely unexplored. OBJECTIVES: This study aims to investigate the impacts of polymer microspheres on tissue metabolism in mice by assessing the microspheres ability to translocate across the gut barrier and enter into systemic circulation. Specifically, we wanted to examine microsphere accumulation in different organ systems, identify concentration-dependent metabolic changes, and evaluate the effects of mixed microsphere exposures on health outcomes. METHODS: To investigate the impact of ingested microspheres on target metabolic pathways, mice were exposed to either polystyrene (5µm) microspheres or a mixture of polymer microspheres consisting of polystyrene (5µm), polyethylene (1-4µm), and the biodegradability and biocompatible plastic, poly-(lactic-co-glycolic acid) (5µm). Exposures were performed twice a week for 4 weeks at a concentration of either 0, 2, or 4mg/week via oral gastric gavage. Tissues were collected to examine microsphere ingress and changes in metabolites. RESULTS: In mice that ingested microspheres, we detected polystyrene microspheres in distant tissues including the brain, liver, and kidney. Additionally, we report on the metabolic differences that occurred in the colon, liver, and brain, which showed differential responses that were dependent on concentration and type of microsphere exposure. DISCUSSION: This study uses a mouse model to provide critical insight into the potential health implications of the pervasive issue of plastic pollution. These findings demonstrate that orally consumed polystyrene or mixed polymer microspheres can accumulate in tissues such as the brain, liver, and kidney. Furthermore, this study highlights concentration-dependent and polymer type-specific metabolic changes in the colon, liver, and brain after plastic microsphere exposure. These results underline the mobility within and between biological tissues of MPs after exposure and emphasize the importance of understanding their metabolic impact. https://doi.org/10.1289/EHP13435.


Assuntos
Poliestirenos , Poluentes Químicos da Água , Humanos , Animais , Camundongos , Microesferas , Plásticos , Distribuição Tecidual , Microplásticos , Poluentes Químicos da Água/análise
14.
Toxicol Sci ; 193(1): 90-102, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-36881996

RESUMO

Microplastics represent an emerging environmental contaminant, with large gaps in our understanding of human health impacts. Furthermore, environmental factors may modify the plastic chemistry, further altering the toxic potency. Ultraviolet (UV) light is one such unavoidable factor for airborne microplastic particulates and a known modifier of polystyrene surface chemistry. As an experimental model, we aged commercially available polystyrene microspheres for 5 weeks with UV radiation, then compared the cellular responses in A549 lung cells with both pristine and irradiated particulates. Photoaging altered the surface morphology of irradiated microspheres and increased the intensities of polar groups on the near-surface region of the particles as indicated by scanning electron microscopy and by fitting of high-resolution X-ray photoelectron spectroscopy C 1s spectra, respectively. Even at low concentrations (1-30 µg/ml), photoaged microspheres at 1 and 5 µm in diameter exerted more pronounced biological responses in the A549 cells than was caused by pristine microspheres. High-content imaging analysis revealed S and G2 cell cycle accumulation and morphological changes, which were also more pronounced in A549 cells treated with photoaged microspheres, and further influenced by the size, dose, and time of exposures. Polystyrene microspheres reduced monolayer barrier integrity and slowed regrowth in a wound healing assay in a manner dependent on dose, photoaging, and size of the microsphere. UV-photoaging generally enhanced the toxicity of polystyrene microspheres in A549 cells. Understanding the influence of weathering and environmental aging, along with size, shape, and chemistry, on microplastics biocompatibility may be an essential consideration for incorporation of different plastics in products.


Assuntos
Poluentes Químicos da Água , Humanos , Pulmão , Microplásticos/toxicidade , Microesferas , Estresse Oxidativo , Plásticos/análise , Poliestirenos/toxicidade , Poliestirenos/análise , Poliestirenos/química , Poluentes Químicos da Água/toxicidade
15.
Toxicol Lett ; 384: 52-62, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37442282

RESUMO

Epidemiological studies have established that exposure to tungsten increases the risk of developing cardiovascular diseases. However, no studies have investigated how tungsten affects cardiac function or the development of cardiovascular disease. Inhalation of tungsten particulates is relevant in occupational settings, and inhalation of particulate matter has a known causative role in driving cardiovascular disease. This study examined if acute inhalation to tungsten particulates affects cardiac function and leads to heart tissue alterations. Female BALB/c mice were exposed to Filtered Air or 1.5 ± 0.23 mg/m3 tungsten particles, using a whole-body inhalation chamber, 4 times over the course of two weeks. Inhalation exposure resulted in mild pulmonary inflammation characterized by an increased percentage and number of macrophages and metabolomic changes in the lungs. Cardiac output was significantly decreased in the tungsten-exposed group. Additionally, A', an indicator of the amount of work required by the atria to fill the heart was elevated. Cardiac gene expression analysis revealed, tungsten exposure increased expression of pro-inflammatory cytokines, markers of remodeling and fibrosis, and oxidative stress genes. These data strongly suggest exposure to tungsten results in cardiac injury characterized by early signs of diastolic dysfunction. Functional findings are in parallel, demonstrating cardiac oxidative stress, inflammation, and early fibrotic changes. Tungsten accumulation data would suggest these cardiac changes are driven by systemic consequences of pulmonary damage.


Assuntos
Doenças Cardiovasculares , Pneumonia , Camundongos , Animais , Feminino , Tungstênio/toxicidade , Doenças Cardiovasculares/metabolismo , Pulmão/metabolismo , Material Particulado/toxicidade , Pneumonia/metabolismo , Exposição por Inalação/efeitos adversos
16.
Res Sq ; 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37333410

RESUMO

Smoke from wildland fires has been shown to produce neuroinflammation in preclinical models, characterized by neural infiltrations of neutrophils and monocytes, as well as altered neurovascular endothelial phenotypes. To address the longevity of such outcomes, the present study examined the neuroinflammatory and metabolomic temporal dynamics after inhalation exposures from biomass-derived smoke. 2-month-old female C57BL/6J mice were exposed to wood smoke every other day for two weeks at an average exposure concentration of 0.5mg/m 3 . Subsequent serial euthanasia occurred at 1-, 3-, 7-, 14-, and 28-days post-exposure. Flow cytometry of right hemispheres revealed two endothelial populations of PECAM (CD31), high and medium expressors, with wood smoke inhalation causing an increased proportion of PECAM Hi . These populations of PECAM Hi and PECAM Med were associated with an anti-inflammatory and pro-inflammatory response, respectively, and their inflammatory profiles were largely resolved by the 28-day mark. However, activated microglial populations (CD11b + /CD45 low ) remained higher in wood smoke-exposed mice than controls at day 28. Infiltrating neutrophil populations decreased to levels below controls by day 28. However, the MHC-II expression of the peripheral immune infiltrate remained high, and the population of neutrophils retained an increased expression of CD45, Ly6C, and MHC-II. Utilizing an unbiased approach examining the metabolomic alterations, we observed notable hippocampal perturbations in neurotransmitter and signaling molecules like glutamate, quinolinic acid, and 5-α-dihydroprogesterone. Utilizing a targeted panel designed to explore the aging-associated NAD + metabolic pathway, wood smoke exposure drove fluctuations and compensations across the 28-day time course, ending with decreased hippocampal NAD + abundance at day 28. Summarily, these results indicate a highly dynamic neuroinflammatory environment, with potential resolution extending past 28 days, the implications of which may include long-term behavioral changes, systemic and neurological sequalae directly associated wtith wildfire smoke exposure.

17.
bioRxiv ; 2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37790385

RESUMO

Wildland fires have become progressively more extensive over the past 30 years in the US, and now routinely generate smoke that deteriorates air quality for most of the country. We explored the neurometabolomic impact that smoke derived from biomass has on older (18 months) female C57BL/6J mice, both acutely and after 10 weeks of recovery from exposures. Mice (N=6/group) were exposed to wood smoke (WS) 4 hours/day, every other day, for 2 weeks (7 exposures total) to an average concentration of 0.448mg/m 3 per exposure. One group was euthanized 24 hours after the last exposure. Other groups were then placed on 1 of 4 treatment regimens for 10 weeks after wood smoke exposures: vehicle; resveratrol in chow plus nicotinamide mononucleotide in water (RNMN); senolytics via gavage (dasatanib+quercetin; DQ); or both RNMN with DQ (RNDQ). Among the findings, the aging from 18 months to 21 months was associated with the greatest metabolic shift, including changes in nicotinamide metabolism, with WS exposure effects that were relatively modest. WS caused a reduction in NAD+ within the prefrontal cortex immediately after exposure and a long-term reduction in serotonin that persisted for 10 weeks. The serotonin reductions were corroborated by forced swim tests, which revealed an increased immobility (reduction in motivation) immediately post-exposure and persisted for 10 weeks. RNMN had the most beneficial effects after WS exposure, while RNDQ caused markers of brain aging to be upregulated within WS-exposed mice. Findings highlight the persistent neurometabolomic and behavioral effects of woodsmoke exposure in an aged mouse model. Significance Statement: Neurological impacts of wildfire smoke are largely underexplored but include neuroinflammation and metabolic changes. The present study highlights modulation of major metabolites in the prefrontal cortex and behavioral consequences in aged (18 month) female mice that persists 10 weeks after wood smoke exposure ended. Supplements derived from the anti-aging field were able to mitigate much of the woodsmoke effect, especially a combination of resveratrol and nicotinamide mononucleotide.

18.
Toxicol Sci ; 196(2): 238-249, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37695302

RESUMO

Ozone (O3) is a criteria air pollutant with the most frequent incidence of exceeding air quality standards. Inhalation of O3 is known to cause lung inflammation and consequent systemic health effects, including endothelial dysfunction. Epidemiologic data have shown that gestational exposure to air pollutants correlates with complications of pregnancy, including low birth weight, intrauterine growth deficiency, preeclampsia, and premature birth. Mechanisms underlying how air pollution may facilitate or exacerbate gestational complications remain poorly defined. The current study sought to uncover how gestational O3 exposure impacted maternal cardiovascular function, as well as the development of the placenta. Pregnant mice were exposed to 1PPM O3 or a sham filtered air (FA) exposure for 4 h on gestational day (GD) 10.5, and evaluated for cardiac function via echocardiography on GD18.5. Echocardiography revealed a significant reduction in maternal stroke volume and ejection fraction in maternally exposed dams. To examine the impact of maternal O3 exposure on the maternal-fetal interface, placentae were analyzed by single-cell RNA sequencing analysis. Mid-gestational O3 exposure led to significant differential expression of 4021 transcripts compared with controls, and pericytes displayed the greatest transcriptional modulation. Pathway analysis identified extracellular matrix organization to be significantly altered after the exposure, with the greatest modifications in trophoblasts, pericytes, and endothelial cells. This study provides insights into potential molecular processes during pregnancy that may be altered due to the inhalation of environmental toxicants.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Cardiopatias , Ozônio , Humanos , Feminino , Gravidez , Animais , Camundongos , Células Endoteliais , Pericitos , Material Particulado , Placenta , Poluentes Atmosféricos/toxicidade , Exposição Materna/efeitos adversos
19.
bioRxiv ; 2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-37398080

RESUMO

Global plastic use has consistently increased over the past century with several different types of plastics now being produced. Much of these plastics end up in oceans or landfills leading to a substantial accumulation of plastics in the environment. Plastic debris slowly degrades into microplastics (MPs) that can ultimately be inhaled or ingested by both animals and humans. A growing body of evidence indicates that MPs can cross the gut barrier and enter into the lymphatic and systemic circulation leading to accumulation in tissues such as the lungs, liver, kidney, and brain. The impacts of mixed MPs exposure on tissue function through metabolism remains largely unexplored. To investigate the impact of ingested MPs on target metabolomic pathways, mice were subjected to either polystyrene microspheres or a mixed plastics (5 µm) exposure consisting of polystyrene, polyethylene and the biodegradability and biocompatible plastic, poly-(lactic-co-glycolic acid). Exposures were performed twice a week for four weeks at a dose of either 0, 2, or 4 mg/week via oral gastric gavage. Our findings demonstrate that, in mice, ingested MPs can pass through the gut barrier, be translocated through the systemic circulation, and accumulate in distant tissues including the brain, liver, and kidney. Additionally, we report on the metabolomic changes that occur in the colon, liver and brain which show differential responses that are dependent on dose and type of MPs exposure. Lastly, our study provides proof of concept for identifying metabolomic alterations associated with MPs exposure and adds insight into the potential health risks that mixed MPs contamination may pose to humans.

20.
Toxicol Sci ; 186(1): 149-162, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-34865172

RESUMO

Utilizing a mobile laboratory located >300 km away from wildfire smoke (WFS) sources, this study examined the systemic immune response profile, with a focus on neuroinflammatory and neurometabolomic consequences, resulting from inhalation exposure to naturally occurring wildfires in California, Arizona, and Washington in 2020. After a 20-day (4 h/day) exposure period in a mobile laboratory stationed in New Mexico, WFS-derived particulate matter (WFPM) inhalation resulted in significant neuroinflammation while immune activity in the peripheral (lung, bone marrow) appeared to be resolved in C57BL/6 mice. Importantly, WFPM exposure increased cerebrovascular endothelial cell activation and expression of adhesion molecules (VCAM-1 and ICAM-1) in addition to increased glial activation and peripheral immune cell infiltration into the brain. Flow cytometry analysis revealed proinflammatory phenotypes of microglia and peripheral immune subsets in the brain of WFPM-exposed mice. Interestingly, endothelial cell neuroimmune activity was differentially associated with levels of PECAM-1 expression, suggesting that subsets of cerebrovascular endothelial cells were transitioning to resolution of inflammation following the 20-day exposure. Neurometabolites related to protection against aging, such as NAD+ and taurine, were decreased by WFPM exposure. Additionally, increased pathological amyloid-beta protein accumulation, a hallmark of neurodegeneration, was observed. Neuroinflammation, together with decreased levels of key neurometabolites, reflect a cluster of outcomes with important implications in priming inflammaging and aging-related neurodegenerative phenotypes.


Assuntos
Poluentes Atmosféricos , Incêndios Florestais , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Animais , Células Endoteliais , Camundongos , Camundongos Endogâmicos C57BL , Material Particulado/análise , Material Particulado/toxicidade , Fumaça/efeitos adversos , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA