RESUMO
In human cells, receptor-interacting protein kinase 2 (RIPK2) is mainly known to mediate downstream enzymatic cascades from the nucleotide-binding oligomerization domain-containing receptors 1 and 2 (NOD1/2), which are regulators of pro-inflammatory signaling. Thus, the targeted inhibition of RIPK2 has been proposed as a pharmacological strategy for the treatment of a variety of pathologies, in particular inflammatory and autoimmune diseases. In this work, we designed and developed novel thieno[2,3d]pyrimidine derivatives, in order to explore their activity and selectivity as RIPK2 inhibitors. Primary in vitro evaluations of the new molecules against purified RIPKs (RIPK1-4) demonstrated outstanding inhibitory potency and selectivity for the enzyme RIPK2. Moreover, investigations for efficacy against the RIPK2-NOD1/2 signaling pathways, conducted in living cells, showed their potency could be tuned towards a low nanomolar range. This could be achieved by solely varying the substitutions at position 6 of the thieno[2,3d]pyrimidine scaffold. A subset of lead inhibitors were ultimately evaluated for selectivity against 58 human kinases other than RIPKs, displaying great specificities. We therefore obtained new inhibitors that might serve as starting point for the preparation of targeted tools, which could be useful to gain a better understanding of biological roles and clinical potential of RIPK2.
Assuntos
Inflamação , Proteína Serina-Treonina Quinase 2 de Interação com Receptor , Transdução de Sinais , Humanos , Inflamação/tratamento farmacológico , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/antagonistas & inibidores , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/metabolismoRESUMO
Salmonella enterica serovar Typhimurium is a Gram-negative bacterium, which can invade and survive within macrophages. Pathogenic salmonellae induce the secretion of specific cytokines from these phagocytic cells and interfere with the host secretory pathways. In this study, we describe the extracellular proteome of human macrophages infected with S Typhimurium, followed by analysis of canonical pathways of proteins isolated from the extracellular milieu. We demonstrate that some of the proteins secreted by macrophages upon S Typhimurium infection are released via exosomes. Moreover, we show that infected macrophages produce CD63+ and CD9+ subpopulations of exosomes at 2 h postinfection. Exosomes derived from infected macrophages trigger the Toll-like receptor 4-dependent release of tumor necrosis factor alpha (TNF-α) from naive macrophages and dendritic cells, but they also stimulate secretion of such cytokines as RANTES, IL-1ra, MIP-2, CXCL1, MCP-1, sICAM-1, GM-CSF, and G-CSF. Proinflammatory effects of exosomes are partially attributed to lipopolysaccharide, which is encapsulated within exosomes. In summary, we show for the first time that proinflammatory exosomes are formed in the early phase of macrophage infection with S Typhimurium and that they can be used to transfer cargo to naive cells, thereby leading to their stimulation.
Assuntos
Exossomos/metabolismo , Fatores Imunológicos/análise , Macrófagos/metabolismo , Macrófagos/microbiologia , Proteoma/análise , Infecções por Salmonella/patologia , Salmonella typhimurium/imunologia , Células Cultivadas , HumanosRESUMO
Yersinia enterocolitica is a facultative intracellular pathogen and a causative agent of yersiniosis, which can be contracted by ingestion of contaminated food. Yersinia secretes virulence factors to subvert critical pathways in the host cell. In this study we utilized shotgun label-free proteomics to study differential protein expression in epithelial cells infected with Y.enterocolitica. We identified a total of 551 proteins, amongst which 42 were downregulated (including Prostaglandin E Synthase 3, POH-1 and Karyopherin alpha) and 22 were upregulated (including Rab1 and RhoA) in infected cells. We validated some of these results by western blot analysis of proteins extracted from Caco-2 and HeLa cells. The proteomic dataset was used to identify host canonical pathways and molecular functions modulated by this infection in the host cells. This study constitutes a proteome of Yersinia-infected cells and can support new discoveries in the area of host-pathogen interactions. STATEMENT OF SIGNIFICANCE OF THE STUDY: We describe a proteome of Yersinia enterocolitica-infected HeLa cells, including a description of specific proteins differentially expressed upon infection, molecular functions as well as pathways altered during infection. This proteomic study can lead to a better understanding of Y. enterocolitica pathogenesis in human epithelial cells.
Assuntos
Interações Hospedeiro-Patógeno/genética , Biossíntese de Proteínas/genética , Yersiniose/genética , Yersinia enterocolitica/genética , Regulação Bacteriana da Expressão Gênica , Células HeLa , Humanos , Proteômica , Yersiniose/microbiologia , Yersinia enterocolitica/patogenicidadeRESUMO
Zika virus is considered a major global threat to human kind. Here, we present a crystal structure of one of its essential enzymes, the methyltransferase, with the inhibitor sinefungin. This structure, together with previously solved structures with bound substrates, will provide the information needed for rational inhibitor design. Based on the structural data we suggest the modification of the adenine moiety of sinefungin to increase selectivity and to covalently link it to a GTP analogue, to increase the affinity of the synthesized compounds.
Assuntos
Adenosina/análogos & derivados , Inibidores Enzimáticos/química , Metiltransferases/antagonistas & inibidores , Zika virus/enzimologia , Adenosina/química , Sítios de Ligação , Modelos Moleculares , Ligação ProteicaRESUMO
Human APOBEC3A (A3A) is a single-domain cytidine deaminase that converts deoxycytidine residues to deoxyuridine in single-stranded DNA (ssDNA). It inhibits a wide range of viruses and endogenous retroelements such as LINE-1, but it can also edit genomic DNA, which may play a role in carcinogenesis. Here, we extend our recent findings on the NMR structure of A3A and report structural, biochemical and cell-based mutagenesis studies to further characterize A3A's deaminase and nucleic acid binding activities. We find that A3A binds ssRNA, but the RNA and DNA binding interfaces differ and no deamination of ssRNA is detected. Surprisingly, with only one exception (G105A), alanine substitution mutants with changes in residues affected by specific ssDNA binding retain deaminase activity. Furthermore, A3A binds and deaminates ssDNA in a length-dependent manner. Using catalytically active and inactive A3A mutants, we show that the determinants of A3A deaminase activity and anti-LINE-1 activity are not the same. Finally, we demonstrate A3A's potential to mutate genomic DNA during transient strand separation and show that this process could be counteracted by ssDNA binding proteins. Taken together, our studies provide new insights into the molecular properties of A3A and its role in multiple cellular and antiviral functions.
Assuntos
Citidina Desaminase/química , Proteínas/química , Sequência de Aminoácidos , Aminoácidos/química , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , DNA de Cadeia Simples/química , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , Desaminação , Proteínas de Escherichia coli/metabolismo , Transcriptase Reversa do HIV/metabolismo , Humanos , Elementos Nucleotídeos Longos e Dispersos , Dados de Sequência Molecular , Mutação , Ligação Proteica , Conformação Proteica , Proteínas/genética , Proteínas/metabolismo , RNA/química , RNA/metabolismo , Alinhamento de Sequência , Transcrição GênicaRESUMO
Francisella tularensis influences several host molecular/signaling pathways during infection. Ubiquitination and deubiquitination are among the most important regulatory mechanisms and respectively occur through attachment or removal of the ubiquitin molecule. The process is necessary not only to mark molecules for degradation, but also, for example, to the activation of signaling pathways leading to pro-inflammatory host response. Many intracellular pathogens, including Francisella tularensis, have evolved mechanisms of modifying such host immune responses to escape degradation. Here, we describe that F. tularensis interferes with the host's ubiquitination system. We show increased total activity of deubiquitinating enzymes (DUBs) in human macrophages after infection, while confirm reduced enzymatic activities of two specific DUBs (USP10 and UCH-L5), and demonstrate increased activity of USP25. We further reveal the enrichment of these three enzymes in exosomes derived from F. tularensis-infected cells. The obtained results show the regulatory effect on ubiquitination mechanism in macrophages during F. tularensis infection.
Assuntos
Francisella tularensis , Infecções por Bactérias Gram-Negativas , Humanos , Macrófagos , Infecções por Bactérias Gram-Negativas/metabolismo , Transdução de Sinais , Enzimas Desubiquitinantes/metabolismo , Ubiquitina Tiolesterase/metabolismoRESUMO
Introduction: Ubiquitination is an important protein modification that regulates various essential cellular processes, including the functions of innate immune cells. Deubiquitinases are enzymes responsible for removing ubiquitin modification from substrates, and the regulation of deubiquitinases in macrophages during infection with Salmonella Typhimurium and Yersinia enterocolitica remains unknown. Methods: To identify deubiquitinases regulated in human macrophages during bacterial infection, an activity-based proteomics screen was conducted. The effects of pharmacological inhibition of the identified deubiquitinase, USP8, were examined, including its impact on bacterial survival within macrophages and its role in autophagy regulation during Salmonella infection. Results: Several deubiquiitnases were differentially regulated in infected macrophages. One of the deubiquitinases identified was USP8, which was downregulated upon Salmonella infection. Inhibition of USP8 was associated with a decrease in bacterial survival within macrophages, and it was found to play a distinct role in regulating autophagy during Salmonella infection. The inhibition of USP8 led to the downregulation of the p62 autophagy adaptor. Discussion: The findings of this study suggest a novel role of USP8 in regulating autophagy flux, which restricts intracellular bacteria, particularly during Salmonella infection.
Assuntos
Infecções por Salmonella , Humanos , Salmonella typhimurium/metabolismo , Autofagia , Ubiquitinação , Enzimas Desubiquitinantes/metabolismo , Endopeptidases/genética , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genéticaRESUMO
Receptor-interacting protein kinases 2 and 3 (RIPK2 and RIPK3) are considered attractive therapeutic enzyme targets for the treatment of a multitude of inflammatory diseases and cancers. In this study, we developed three interrelated series of novel quinazoline-based derivatives to investigate the effects of extensive modifications of positions 6 and 7 of the central core on the inhibitory activity and the selectivity against these RIPKs. The design of the derivatives was inspired by analyses of available literary knowledge on both RIPK2 and RIPK3 in complex with known quinazoline or quinoline inhibitors. Enzymatic investigations for bioactivity of the prepared molecules against purified RIPKs (RIPK1-4) shed light on multiple potent and selective RIPK2 and dual RIPK2/3 inhibitors. Furthermore, evaluations in living cells against the RIPK2-NOD1/2-mediated signaling pathways, identified as the potential primary targets, demonstrated nanomolar inhibition for a majority of the compounds. In addition, we have demonstrated overall good stability of various lead inhibitors in both human and mouse microsomes and plasma. Several of these compounds also were evaluated for selectivity across 58 human kinases other than RIPKs, exhibiting outstanding specificity profiles. We have thus clearly demonstrated that tuning appropriate substitutions at positions 6 and 7 of the developed quinazoline derivatives may lead to interesting potency and specificities against RIPK2 and RIPK3. This knowledge might therefore be employed for the targeted preparation of new, highly potent and selective tools against these RIPKs, which could be of utility in biological and clinical research.
Assuntos
Microssomos , Quinazolinas , Humanos , Animais , Camundongos , Quinazolinas/farmacologia , Proteína Serina-Treonina Quinase 2 de Interação com ReceptorRESUMO
Macroautophagy/autophagy is a catabolic process by which cytosolic content is engulfed, degraded and recycled. It has been implicated as a critical pathway in advanced stages of cancer, as it maintains tumor cell homeostasis and continuous growth by nourishing hypoxic or nutrient-starved tumors. Autophagy also supports alternative cellular trafficking pathways, providing a mechanism of non-canonical secretion of inflammatory cytokines. This opens a significant therapeutic opportunity for using autophagy inhibitors in cancer and acute inflammatory responses. Here we developed a high throughput compound screen to identify inhibitors of protein-protein interaction (PPI) in autophagy, based on the protein-fragment complementation assay (PCA). We chose to target the ATG12-ATG3 PPI, as this interaction is indispensable for autophagosome formation, and the analyzed structure of the interaction interface predicts that it may be amenable to inhibition by small molecules. We screened 41,161 compounds yielding 17 compounds that effectively inhibit the ATG12-ATG3 interaction in the PCA platform, and which were subsequently filtered by their ability to inhibit autophagosome formation in viable cells. We describe a lead compound (#189) that inhibited GFP-fused MAP1LC3B/LC3B (microtubule associated protein 1 light chain 3 beta) puncta formation in cells with IC50 value corresponding to 9.3 µM. This compound displayed a selective inhibitory effect on the growth of autophagy addicted tumor cells and inhibited secretion of IL1B/IL-1ß (interleukin 1 beta) by macrophage-like cells. Compound 189 has the potential to be developed into a therapeutic drug and its discovery documents the power of targeting PPIs for acquiring specific and selective compound inhibitors of autophagy.Abbreviations: ANOVA: analysis of variance; ATG: autophagy related; CQ: chloroquine; GFP: green fluorescent protein; GLuc: Gaussia Luciferase; HEK: human embryonic kidney; IL1B: interleukin 1 beta; LPS: lipopolysaccharide; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; PCA: protein-fragment complementation assay; PDAC: pancreatic ductal adenocarcinoma; PMA: phorbol 12-myristate 13-acetate; PPI: protein-protein interaction. VCL: vinculin.
Assuntos
Autofagia , Neoplasias Pancreáticas , Humanos , Interleucina-1beta/farmacologia , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Relacionadas à Autofagia , Proteínas de Fluorescência Verde/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Proteína 12 Relacionada à AutofagiaRESUMO
BACKGROUND: The genome of Pseudomonas aeruginosa contains at least three genes encoding eukaryotic-type Ser/Thr protein kinases, one of which, ppkA, has been implicated in P. aeruginosa virulence. Together with the adjacent pppA phosphatase gene, they belong to the type VI secretion system (H1-T6SS) locus, which is important for bacterial pathogenesis. To determine the biological function of this protein pair, we prepared a pppA-ppkA double mutant and characterised its phenotype and transcriptomic profiles. RESULTS: Phenotypic studies revealed that the mutant grew slower than the wild-type strain in minimal media and exhibited reduced secretion of pyoverdine. In addition, the mutant had altered sensitivity to oxidative and hyperosmotic stress conditions. Consequently, mutant cells had an impaired ability to survive in murine macrophages and an attenuated virulence in the plant model of infection. Whole-genome transcriptome analysis revealed that pppA-ppkA deletion affects the expression of oxidative stress-responsive genes, stationary phase σ-factor RpoS-regulated genes, and quorum-sensing regulons. The transcriptome of the pppA-ppkA mutant was also analysed under conditions of oxidative stress and showed an impaired response to the stress, manifested by a weaker induction of stress adaptation genes as well as the genes of the SOS regulon. In addition, expression of either RpoS-regulated genes or quorum-sensing-dependent genes was also affected. Complementation analysis confirmed that the transcription levels of the differentially expressed genes were specifically restored when the pppA and ppkA genes were expressed ectopically. CONCLUSIONS: Our results suggest that in addition to its crucial role in controlling the activity of P. aeruginosa H1-T6SS at the post-translational level, the PppA-PpkA pair also affects the transcription of stress-responsive genes. Based on these data, it is likely that the reduced virulence of the mutant strain results from an impaired ability to survive in the host due to the limited response to stress conditions.
Assuntos
Deleção de Genes , Estresse Oxidativo , Pseudomonas aeruginosa/genética , Animais , Proteínas de Bactérias/genética , Linhagem Celular , Regulação Bacteriana da Expressão Gênica , Teste de Complementação Genética , Lactuca/microbiologia , Macrófagos/microbiologia , Camundongos , Viabilidade Microbiana , Análise de Sequência com Séries de Oligonucleotídeos , Oligopeptídeos/biossíntese , Fenótipo , Proteínas Serina-Treonina Quinases/genética , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/patogenicidade , RNA Bacteriano/genética , Transcriptoma , VirulênciaRESUMO
Ubiquitination of proteins, like phosphorylation and acetylation, is an important regulatory aspect influencing numerous and various cell processes, such as immune response signaling and autophagy. The study of ubiquitination has become essential to learning about host-pathogen interactions, and a better understanding of the detailed mechanisms through which pathogens affect ubiquitination processes in host cell will contribute to vaccine development and effective treatment of diseases. Pathogenic bacteria (e.g., Salmonella enterica, Legionella pneumophila and Shigella flexneri) encode many effector proteins, such as deubiquitinating enzymes (DUBs), targeting the host ubiquitin machinery and thus disrupting pertinent ubiquitin-dependent anti-bacterial response. We focus here upon the host ubiquitination system as an integral unit, its interconnection with the regulation of inflammation and autophagy, and primarily while examining pathogens manipulating the host ubiquitination system. Many bacterial effector proteins have already been described as being translocated into the host cell, where they directly regulate host defense processes. Due to their importance in pathogenic bacteria progression within the host, they are regarded as virulence factors essential for bacterial evasion. However, in some cases (e.g., Francisella tularensis) the host ubiquitination system is influenced by bacterial infection, although the responsible bacterial effectors are still unknown.
RESUMO
We describe the expression and purification of an active recombinant Zika virus RNA-dependent RNA polymerase (RdRp). Next, we present the development and optimization of an in vitro assay to measure its activity. We then applied the assay to selected triphosphate analogs and discovered that 2'-C-methylated nucleosides exhibit strong inhibitory activity. Surprisingly, also carbocyclic derivatives with the carbohydrate locked in a North-like conformation as well as a ribonucleotide with a South conformation exhibited strong activity. Our results suggest that the traditional 2'-C-methylated nucleosides pursued in the race for anti-HCV treatment can be superseded by brand new scaffolds in the case of the Zika virus.
Assuntos
Trifosfato de Adenosina/análogos & derivados , Antivirais/farmacologia , Inibidores Enzimáticos/farmacologia , Nucleosídeos/farmacologia , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Zika virus/efeitos dos fármacos , Trifosfato de Adenosina/química , Descoberta de Drogas , Humanos , Conformação Molecular , Nucleosídeos/química , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/isolamento & purificação , Zika virus/enzimologiaRESUMO
Human APOBEC3A is a single-stranded DNA cytidine deaminase that restricts viral pathogens and endogenous retrotransposons, and has a role in the innate immune response. Furthermore, its potential to act as a genomic DNA mutator has implications for a role in carcinogenesis. A deeper understanding of APOBEC3A's deaminase and nucleic acid-binding properties, which is central to its biological activities, has been limited by the lack of structural information. Here we report the nuclear magnetic resonance solution structure of APOBEC3A and show that the critical interface for interaction with single-stranded DNA substrates includes residues extending beyond the catalytic centre. Importantly, by monitoring deaminase activity in real time, we find that A3A displays similar catalytic activity on APOBEC3A-specific TTCA- or A3G-specific CCCA-containing substrates, involving key determinants immediately 5' of the reactive C. Our results afford novel mechanistic insights into APOBEC3A-mediated deamination and provide the structural basis for further molecular studies.
Assuntos
Citidina Desaminase/química , Citidina Desaminase/metabolismo , Espectroscopia de Ressonância Magnética , Proteínas/química , Proteínas/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Biocatálise , DNA/metabolismo , Desaminação , Nucleotídeos de Desoxicitosina/metabolismo , Humanos , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , RNA/metabolismo , Soluções , Especificidade por Substrato , Uridina Trifosfato/metabolismoRESUMO
The HIV-1 capsid protein consists of two independently folded domains connected by a flexible peptide linker (residues 146-150), the function of which remains to be defined. To investigate the role of this region in virus replication, we made alanine or leucine substitutions in each linker residue and two flanking residues. Three classes of mutants were identified: (i) S146A and T148A behave like wild type (WT); (ii) Y145A, I150A, and L151A are noninfectious, assemble unstable cores with aberrant morphology, and synthesize almost no viral DNA; and (iii) P147L and S149A display a poorly infectious, attenuated phenotype. Infectivity of P147L and S149A is rescued specifically by pseudotyping with vesicular stomatitis virus envelope glycoprotein. Moreover, despite having unstable cores, these mutants assemble WT-like structures and synthesize viral DNA, although less efficiently than WT. Collectively, these findings demonstrate that the linker region is essential for proper assembly and stability of cores and efficient replication.
Assuntos
Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , HIV-1/química , HIV-1/crescimento & desenvolvimento , Proteínas do Core Viral/metabolismo , Montagem de Vírus , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química , Substituição de Aminoácidos , Animais , Aotidae , Proteínas do Capsídeo/genética , Células HEK293 , HIV-1/genética , Células HeLa , Humanos , Glicoproteínas de Membrana/metabolismo , Estrutura Terciária de Proteína , Proteínas do Envelope Viral/metabolismo , Replicação Viral , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismoRESUMO
Streptococcus pneumoniae carries a single Ser/Thr protein kinase gene stkP in its genome. Biochemical studies performed with recombinant StkP have revealed that this protein is a functional membrane-linked eukaryotic-type Ser/Thr protein kinase. Here, we demonstrate that the deletion of its extracellular domain negatively affects the stability of a core kinase domain. In contrast, the membrane anchored kinase domain and the full-length form of StkP were stable and capable of autophosphorylation. Furthermore, evidence is presented that StkP forms dimers through its transmembrane and extracellular domains.