Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mycorrhiza ; 30(5): 611-621, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32556837

RESUMO

The use of genetically modified (GM) plants has increased in recent decades, but there are uncertainties about their effects on soil microbial communities. Aiming to quantify root colonization and characterize arbuscular mycorrhizal fungi (AMF) communities associated with roots and rhizosphere soil of different maize genotypes, a field trial was carried out in Southern Brazil with three maize genotypes as follows: a GM hybrid (DKB 240 VTPRO), its non-modified isoline (DKB 240), and a landrace (Pixurum). Soil samples were collected to evaluate the occurrence of AMF during the growth of corn genotypes at sowing and V3 (vegetative), R1 (flowering), and R3 (grain formation) stages of the crop. The occurrence of AMF was determined by the morphological identification of spores, and by analyzing AMF community composition in soil and roots of maize, using PCR-DGGE. The GM genotype of maize promoted lower mycorrhizal colonization in the vegetative stage and had lower sporulation at grain development than the conventional hybrid and the landrace maize. Twenty AMF morphotypes were identified and 13 were associated with all maize genotypes. The genera Acaulospora, Glomus, and Dentiscutata had the largest numbers of species. There were no differences in AMF community composition due to maize genotypes or genetic modification, but crop phenological stages affected AMF communities associated with maize roots.


Assuntos
Micobioma , Micorrizas , Brasil , Raízes de Plantas , Microbiologia do Solo , Esporos Fúngicos , Zea mays
2.
Mycorrhiza ; 29(3): 237-249, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30788565

RESUMO

Land area planted with genetically modified (GM) crops has grown rapidly, and Brazil has the second largest area with those plants. There is, however, limited information on the possible effects of that technology on non-target organisms, especially root symbionts, such as arbuscular mycorrhizal fungi (AMF). We evaluated AMF symbiosis development in five maize genotypes: one landrace, two conventional hybrids (DKB 240 and Formula), and two GM hybrids (DKB 240-VT Pro and Formula TL). We evaluated symbiosis response in two separate experiments: one in autumn and the other in summer. Plants were inoculated with Rhizophagus clarus (Rc) and Gigaspora margarita (Gm) and compared to plants without inoculation. We evaluated root colonization, spore number, and plant biomass and phosphorous accumulation 30 and 60 days after inoculation. There were no consistent effects of GM crops, but AMF species and maize genotype affected symbiosis development. Formula genotype (isoline and GM) had a negative response to inoculation, with a decrease of around 30% in biomass and P concentration in Rc-inoculated plants. The maize landrace had a positive response, with increases of 17% and 14% in the same variables. DKB genotype (isoline and GM) showed negative, positive, and neutral effects. The results show that plant genetic identity is a determinant factor in symbiosis performance, suggesting that plants selected in low P availability can make better use of mycorrhizal symbiosis. Given the role that AMF play in different ecosystem processes, use of landrace maize may contribute to agrobiodiversity conservation.


Assuntos
Micorrizas/fisiologia , Raízes de Plantas/microbiologia , Plantas Geneticamente Modificadas/microbiologia , Simbiose , Zea mays/microbiologia , Biomassa , Brasil , Genótipo , Fósforo/análise , Estações do Ano , Solo/química , Microbiologia do Solo , Zea mays/genética
3.
Arch Microbiol ; 199(7): 991-1001, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28382474

RESUMO

Coal open pit mining in the South of Santa Catarina state (Brazil) was inappropriately developed, affecting approximately 6.700 ha. Re-vegetation is an alternative for the recovery of these areas. Furthermore, the use of herbaceous legumes inoculated with nitrogen fixing bacteria is motivated due to the difficulty implementing a vegetation cover in these areas, mainly due to low nutrient availability. Therefore, the aim of this work was to evaluate, among 16 autochthonous rhizobia isolated from the coal mining areas, those with the greatest potential to increase growth of the herbaceous legumes Vicia sativa and Calopogonium mucunoides. Tests were conducted in greenhouse containing 17 inoculation treatments (16 autochthonous rhizobia + Brazilian recommended strain for each plant species), plus two treatments without inoculation (with and without mineral nitrogen). After 60 days, nodulation, growth, N uptake, and symbiotic efficiency were evaluated. Isolates characterization was assessed by the production of indole acetic acid, ACC deaminase, siderophores, and inorganic phosphate solubilization. The classification of the isolates was performed by 16 S rDNA gene sequencing. Only isolates UFSC-M4 and UFSC-M8 were able to nodulate C. mucunoides. Among rhizobia capable of nodulating V. sativa, only UFSC-M8 was considered efficient. It was found the presence of more than one growth-promoting attributes in the same organism, and isolate UFSC-M8 presented all of them. Isolates were classified as belonging to Rhizobium, Burkholderia and Curtobacterium. The results suggest the inoculation of Vicia sativa with strain UFSC-M8, classified as Rhizobium sp., as a promising alternative for the revegetation of coal mining degraded areas.


Assuntos
Actinobacteria/classificação , Burkholderia/classificação , Fabaceae/microbiologia , Rhizobium/classificação , Nódulos Radiculares de Plantas/microbiologia , Vicia sativa/microbiologia , Actinobacteria/genética , Actinobacteria/isolamento & purificação , Brasil , Burkholderia/genética , Burkholderia/isolamento & purificação , Carbono-Carbono Liases/metabolismo , Carvão Mineral , DNA Ribossômico/genética , Ácidos Indolacéticos/metabolismo , Fixação de Nitrogênio , RNA Ribossômico 16S/genética , Rhizobium/genética , Rhizobium/isolamento & purificação , Simbiose/genética , Vicia sativa/crescimento & desenvolvimento
4.
Plants (Basel) ; 12(22)2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38005741

RESUMO

The use of plant-based and micro-organism-based biological inputs is a sustainable agricultural practice. It promotes a suitable and better utilization of non-renewable resources in the environment. The benefits of using micro-organisms are associated with direct and indirect mechanisms, mainly related to improvements in the absorption and availability of nutrients, resulting in a consequent impact on plant growth. The main benefits of using biochemical pesticides are the promotion of sustainability and the management of resistance to pests and diseases. Although the use of micro-organisms and botanical metabolites is a promising agricultural alternative, they are still primarily concentrated in grain crops. There is a huge opportunity to expand the plant-based and micro-organism-based biological inputs used in agriculture due to the wide range of mechanisms of action of those products. At a global level, several terminologies have been adopted to characterize biological inputs, but many terms used conflict with Brazilian legislation. This review will clarify the classes of biological inputs existing in Brazil as well as present the application and evolution of the market for microbiological and plant-based inputs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA