Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(20): e2220852120, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37155895

RESUMO

Many photonic and electronic molecular properties, as well as chemical and biochemical reactivities are controlled by fast intramolecular vibrational energy redistribution (IVR). This fundamental ultrafast process limits coherence time in applications from photochemistry to single quantum level control. While time-resolved multidimensional IR-spectroscopy can resolve the underlying vibrational interaction dynamics, as a nonlinear optical technique it has been challenging to extend its sensitivity to probe small molecular ensembles, achieve nanoscale spatial resolution, and control intramolecular dynamics. Here, we demonstrate a concept how mode-selective coupling of vibrational resonances to IR nanoantennas can reveal intramolecular vibrational energy transfer. In time-resolved infrared vibrational nanospectroscopy, we measure the Purcell-enhanced decrease of vibrational lifetimes of molecular vibrations while tuning the IR nanoantenna across coupled vibrations. At the example of a Re-carbonyl complex monolayer, we derive an IVR rate of (25±8) cm-1 corresponding to (450±150) fs, as is typical for the fast initial equilibration between symmetric and antisymmetric carbonyl vibrations. We model the enhancement of the cross-vibrational relaxation based on intrinsic intramolecular coupling and extrinsic antenna-enhanced vibrational energy relaxation. The model further suggests an anti-Purcell effect based on antenna and laser-field-driven vibrational mode interference which can counteract IVR-induced relaxation. Nanooptical spectroscopy of antenna-coupled vibrational dynamics thus provides for an approach to probe intramolecular vibrational dynamics with a perspective for vibrational coherent control of small molecular ensembles.

2.
J Phys Chem A ; 127(10): 2407-2414, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36876889

RESUMO

Identifying chemical compounds is essential in several areas of science and engineering. Laser-based techniques are promising for autonomous compound detection because the optical response of materials encodes enough electronic and vibrational information for remote chemical identification. This has been exploited using the fingerprint region of infrared absorption spectra, which involves a dense set of absorption peaks that are unique to individual molecules, thus facilitating chemical identification. However, optical identification using visible light has not been realized. Using decades of experimental refractive index data in the scientific literature of pure organic compounds and polymers over a broad range of frequencies from the ultraviolet to the far-infrared, we develop a machine learning classifier that can accurately identify organic species based on a single-wavelength dispersive measurement in the visible spectral region, away from absorption resonances. The optical classifier proposed here could be applied to autonomous material identification protocols and applications.

3.
J Chem Phys ; 156(11): 114702, 2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35317564

RESUMO

We propose to use molecular picocavity ensembles as macroscopic coherent nonlinear optical devices enabled by nanoscale strong coupling. For a generic picocavity model that includes molecular and photonic disorder, we derive theoretical performance bounds for coherent cross-phase modulation signals using weak classical fields of different frequencies. We show that strong coupling of the picocavity vacua with a specific vibronic sideband in the molecular emission spectrum results in a significant variation of the effective refractive index of the metamaterial relative to a molecule-free scenario due to a vacuum-induced Autler-Townes effect. For a realistic molecular disorder model, we demonstrate that cross-phase modulation of optical fields as weak as 10 kW/cm2 is feasible using dilute ensembles of molecular picocavities at room temperature, provided that the confined vacuum is not resonantly driven by the external probe field. Our work paves the way for the development of plasmonic metamaterials that exploit strong coupling for optical state preparation and quantum control.

4.
J Chem Phys ; 157(19): 194104, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36414439

RESUMO

Modeling the non-equilibrium dissipative dynamics of strongly interacting quantized degrees of freedom is a fundamental problem in several branches of physics and chemistry. We implement a quantum state trajectory scheme for solving Lindblad quantum master equations that describe coherent and dissipative processes for a set of strongly coupled quantized oscillators. The scheme involves a sequence of stochastic quantum jumps with transition probabilities determined by the system state and the system-reservoir dynamics. Between consecutive jumps, the wave function is propagated in a coordinate space using the multi-configuration time-dependent Hartree method. We compare this hybrid propagation methodology with exact Liouville space solutions for physical systems of interest in cavity quantum electrodynamics, demonstrating accurate results for experimentally relevant observables using a tractable number of quantum trajectories. We show the potential for solving the dissipative dynamics of finite size arrays of strongly interacting quantized oscillators with high excitation densities, a scenario that is challenging for conventional density matrix propagators due to the large dimensionality of the underlying Hilbert space.

5.
J Chem Phys ; 156(12): 124110, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35364879

RESUMO

Nanoscale infrared (IR) resonators with sub-diffraction limited mode volumes and open geometries have emerged as new platforms for implementing cavity quantum electrodynamics at room temperature. The use of IR nanoantennas and tip nanoprobes to study strong light-matter coupling of molecular vibrations with the vacuum field can be exploited for IR quantum control with nanometer spatial and femtosecond temporal resolution. In order to advance the development of molecule-based quantum nanophotonics in the mid-IR, we propose a generally applicable semi-empirical methodology based on quantum optics to describe light-matter interaction in systems driven by mid-IR femtosecond laser pulses. The theory is shown to reproduce recent experiments on the acceleration of the vibrational relaxation rate in infrared nanostructures. It also provides physical insights on the implementation of coherent phase rotations of the near-field using broadband nanotips. We then apply the quantum framework to develop general tip-design rules for the experimental manipulation of vibrational strong coupling and Fano interference effects in open infrared resonators. We finally propose the possibility of transferring the natural anharmonicity of molecular vibrational levels to the resonator near-field in the weak coupling regime to implement intensity-dependent phase shifts of the coupled system response with strong pulses and develop a vibrational chirping model to understand the effect. The semi-empirical quantum theory is equivalent to first-principles techniques based on Maxwell's equations, but its lower computational cost suggests its use as a rapid design tool for the development of strongly coupled infrared nanophotonic hardware for applications ranging from quantum control of materials to quantum information processing.

6.
Adapt Phys Activ Q ; 38(2): 232-247, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33596537

RESUMO

This study compared physical performance in a group of international cerebral palsy football players during two formats of small-sided games (SSGs) and performance in a simulated game (SG) according to players' sport classes (FT1, FT2, and FT3). Internal load (heart rate and rating of perceived exertion) and external load (total distance, distance covered at different velocities, maximum speed reached, acceleration, and deceleration) were obtained with global positioning system devices during two formats of SSGs (2-a-side/SSG2 and 4-a-side/SSG4) and an SG (7-a-side). SSG2 demands faster actions compared with SSG4/SG, and significant differences and large effect sizes were found in the distance covered in Speed Zones 5 (16.0-17.9 km/hr) and 6 (>18.0 km/hr; p < .05; .35<ηp2<.50, large). Lower moderate accelerations and decelerations per minute in SSG4/SG compared with SSG2 were also found (p < .01; .77<ηp2<.81, large). In the SSG2 task, the FT3 players reached maximum speeds, covered more distance at the highest intensities, and performed more moderate/high accelerations/decelerations and more sprints compared with FT1 and FT2 players (p < .05; -0.85 < dg < -4.64, large). The SSG2 task could be the best option for discriminating physical demands in important variables for cerebral palsy football performance between classes FT3 versus FT1/FT2.


Assuntos
Desempenho Atlético , Paralisia Cerebral , Futebol , Aceleração , Humanos , Esforço Físico
7.
J Chem Phys ; 152(10): 100902, 2020 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-32171209

RESUMO

This is a tutorial-style introduction to the field of molecular polaritons. We describe the basic physical principles and consequences of strong light-matter coupling common to molecular ensembles embedded in UV-visible or infrared cavities. Using a microscopic quantum electrodynamics formulation, we discuss the competition between the collective cooperative dipolar response of a molecular ensemble and local dynamical processes that molecules typically undergo, including chemical reactions. We highlight some of the observable consequences of this competition between local and collective effects in linear transmission spectroscopy, including the formal equivalence between quantum mechanical theory and the classical transfer matrix method, under specific conditions of molecular density and indistinguishability. We also overview recent experimental and theoretical developments on strong and ultrastrong coupling with electronic and vibrational transitions, with a special focus on cavity-modified chemistry and infrared spectroscopy under vibrational strong coupling. We finally suggest several opportunities for further studies that may lead to novel applications in chemical and electromagnetic sensing, energy conversion, optoelectronics, quantum control, and quantum technology.

8.
J Chem Phys ; 152(23): 234111, 2020 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-32571050

RESUMO

Vibrational strong coupling has emerged as a promising route for manipulating the reactivity of molecules inside infrared cavities. We develop a full-quantum methodology to study the unitary dynamics of a single anharmonic vibrational mode interacting with a quantized infrared cavity field. By comparing multi-configurational time-dependent Hartree simulations for an intracavity Morse oscillator with an equivalent formulation of the problem in Hilbert space, we describe for the first time the essential role of permanent dipole moments in the femtosecond dynamics of vibrational polariton wavepackets. We classify molecules into three general families according to the shape of their electric dipole function de(q) along the vibrational mode coordinate q. For polar species with a positive slope of the dipole function at equilibrium, an initial diabatic light-matter product state without vibrational or cavity excitations evolves into a polariton wavepacket with a large number of intracavity photons for interaction strengths at the conventional onset of ultrastrong coupling. This buildup of the cavity photon amplitude is accompanied by an effective lengthening of the vibrational mode that is comparable with a laser-induced vibrational excitation in free space. In contrast, polar molecules with a negative slope of the dipole function experience an effective mode shortening, under equivalent coupling conditions. We validate our predictions using realistic ab initio ground state potentials and dipole functions for HF and CO2 molecules. We also propose a non-adiabatic state preparation scheme to generate vibrational polaritons with molecules near infrared nanoantennas for the spontaneous radiation of infrared quantum light.

9.
J Chem Phys ; 151(14): 144116, 2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31615252

RESUMO

We propose a cavity QED approach to describe light-matter interaction of an infrared cavity field with an anharmonic vibration of a single nonpolar molecule. Starting from a generic Morse oscillator potential with quantized nuclear motion, we derive a multilevel quantum Rabi model to study vibrational polaritons beyond the rotating-wave approximation. We analyze the spectrum of vibrational polaritons in detail and compare it with available experiments. For high excitation energies, the system exhibits a dense manifold of polariton level crossings and avoided crossings as the light-matter coupling strength and cavity frequency are tuned. We also analyze polariton eigenstates in nuclear coordinate space. We show that the bond length of a vibrational polariton at a given energy is never greater than the bond length of a Morse oscillator with the same energy. This type of polariton bond strengthening occurs at the expense of the creation of virtual infrared cavity photons and may have implications in chemical reactivity of polariton states.

10.
Phys Rev Lett ; 118(22): 223601, 2017 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-28621976

RESUMO

Organic microcavities are photonic nanostructures that strongly confine the electromagnetic field, allowing exotic quantum regimes of light-matter interaction with disordered organic semiconductors. The unambiguous interpretation of the spectra of organic microcavities has been a long-standing challenge due to several competing effects involving electrons, vibrations, and cavity photons. Here we present a theoretical framework that is able to describe the main spectroscopic features of organic microcavities consistently. We introduce a class of light-matter excitations called dark vibronic polaritons, which strongly emit but only weakly absorb light in the same frequency region of the bare electronic transition. A successful comparison with experimental data demonstrates the applicability of our theory. The proposed microscopic understanding of organic microcavities paves the way for the development of optoelectronic devices enhanced by quantum optics.

11.
Opt Express ; 24(9): 9932-54, 2016 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-27137604

RESUMO

Generation of entangled photons in nonlinear media constitutes a basic building block of modern photonic quantum technology. Current optical materials are severely limited in their ability to produce three or more entangled photons in a single event due to weak nonlinearities and challenges achieving phase-matching. We use integrated nanophotonics to enhance nonlinear interactions and develop protocols to design multimode waveguides that enable sustained phase-matching for third-order spontaneous parametric down-conversion (TOSPDC). We predict a generation efficiency of 0.13 triplets/s/mW of pump power in TiO2-based integrated waveguides, an order of magnitude higher than previous theoretical and experimental demonstrations. We experimentally verify our device design methods in TiO2 waveguides using third-harmonic generation (THG), the reverse process of TOSPDC that is subject to the same phase-matching constraints. We finally discuss the effect of finite detector bandwidth and photon losses on the energy-time coherence properties of the expected TOSPDC source.

12.
Phys Rev Lett ; 116(23): 238301, 2016 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-27341263

RESUMO

The demonstration of strong and ultrastrong coupling regimes of cavity QED with polyatomic molecules has opened new routes to control chemical dynamics at the nanoscale. We show that strong resonant coupling of a cavity field with an electronic transition can effectively decouple collective electronic and nuclear degrees of freedom in a disordered molecular ensemble, even for molecules with high-frequency quantum vibrational modes having strong electron-vibration interactions. This type of polaron decoupling can be used to control chemical reactions. We show that the rate of electron transfer reactions in a cavity can be orders of magnitude larger than in free space for a wide class of organic molecular species.

13.
J Phys Chem Lett ; 15(29): 7449-7457, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39008808

RESUMO

Molecular strong coupling offers exciting prospects in physics, chemistry, and materials science. While attention has been focused on developing realistic models for the molecular systems, the important role played by the entire photonic mode structure of the optical cavities has been less explored. We show that the effectiveness of molecular strong coupling may be critically dependent on cavity finesse. Specifically we only see emission associated with a dispersive lower polariton for cavities with sufficient finesse. By developing an analytical model of cavity photoluminescence in a multimode structure we clarify the role of finite-finesse in polariton formation and show that lowering the finesse reduces the extent of the mixing of light and matter in polariton states. We suggest that the detailed nature of the photonic modes supported by a cavity will be as important in developing a coherent framework for molecular strong coupling as the inclusion of realistic molecular models.

14.
Sci Rep ; 14(1): 9752, 2024 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-38679676

RESUMO

The TTG2 transcription factor of Arabidopsis regulates a set of epidermal traits, including the differentiation of leaf trichomes, flavonoid pigment production in cells of the inner testa (or seed coat) layer and mucilage production in specialized cells of the outer testa layer. Despite the fact that TTG2 has been known for over twenty years as an important regulator of multiple developmental pathways, little has been discovered about the downstream mechanisms by which TTG2 co-regulates these epidermal features. In this study, we present evidence of phosphoinositide lipid signaling as a mechanism for the regulation of TTG2-dependent epidermal pathways. Overexpression of the AtPLC1 gene rescues the trichome and seed coat phenotypes of the ttg2-1 mutant plant. Moreover, in the case of seed coat color rescue, AtPLC1 overexpression restored expression of the TTG2 flavonoid pathway target genes, TT12 and TT13/AHA10. Consistent with these observations, a dominant AtPLC1 T-DNA insertion allele (plc1-1D) promotes trichome development in both wild-type and ttg2-3 plants. Also, AtPLC1 promoter:GUS analysis shows expression in trichomes and this expression appears dependent on TTG2. Taken together, the discovery of a genetic interaction between TTG2 and AtPLC1 suggests a role for phosphoinositide signaling in the regulation of trichome development, flavonoid pigment biosynthesis and the differentiation of mucilage-producing cells of the seed coat. This finding provides new avenues for future research at the intersection of the TTG2-dependent developmental pathways and the numerous molecular and cellular phenomena influenced by phospholipid signaling.


Assuntos
Proteínas de Arabidopsis , Regulação da Expressão Gênica de Plantas , Fosfoinositídeo Fosfolipase C , Epiderme Vegetal , Transdução de Sinais , Fatores de Transcrição , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flavonoides/metabolismo , Mutação , Fenótipo , Fosfatidilinositóis/metabolismo , Epiderme Vegetal/metabolismo , Epiderme Vegetal/genética , Epiderme Vegetal/citologia , Sementes/genética , Sementes/metabolismo , Sementes/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Tricomas/genética , Tricomas/metabolismo , Tricomas/crescimento & desenvolvimento , Fosfoinositídeo Fosfolipase C/genética , Fosfoinositídeo Fosfolipase C/metabolismo
15.
Phys Rev Lett ; 110(22): 223002, 2013 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-23767718

RESUMO

We determine the phase diagram of a polaron model with mixed breathing-mode and Su-Schrieffer-Heeger couplings and show that it has two sharp transitions, in contrast to pure models which exhibit one (for Su-Schrieffer-Heeger coupling) or no (for breathing-mode coupling) transition. We then show that ultracold molecules trapped in optical lattices can be used as a quantum simulator to study precisely this mixed Hamiltonian, and that the relative contributions of the two couplings can be tuned with external electric fields. The parameters of current experiments place them in the region where one of the transitions occurs. We also propose a scheme to measure the polaron dispersion using stimulated Raman spectroscopy.

16.
Artigo em Inglês | MEDLINE | ID: mdl-36981880

RESUMO

Accessibility to housing is crucial for people with disabilities as it provides them with equal opportunities and allows them to live independently. A systematic literature review has been conducted to understand the current research on accessibility in housing for people with disabilities in Latin America. The study analysed 56 papers and used co-word analysis to identify common themes and topics within the documents. The results of the analysis showed that Brazil (61%) is the country with the most research on the subject, physical disability, at 36%, is the impairment most analysed, and interventions or analysis for the older people (45%) in their homes is the most researched type of population. The co-word analysis revealed that topics such as policy, regulations, the use of technologies, ergonomics interventions, and architectural criteria or barriers to the daily life of disabled people were frequently discussed in the papers. Although this work shows a substantial and growing increase in research on housing for people with disabilities in Latin America, it also demonstrates the importance of increasing research on other types of impairment, such as visual and cognitive-intellectual disabilities, and including children, caregivers, or even young adults.


Assuntos
Pessoas com Deficiência , Deficiência Intelectual , Criança , Adulto Jovem , Humanos , Idoso , Habitação , América Latina , Políticas
17.
Science ; 380(6650): 1165-1168, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37319215

RESUMO

Reaction-rate modifications for chemical processes due to strong coupling between reactant molecular vibrations and the cavity vacuum have been reported; however, no currently accepted mechanisms explain these observations. In this work, reaction-rate constants were extracted from evolving cavity transmission spectra, revealing resonant suppression of the intracavity reaction rate for alcoholysis of phenyl isocyanate with cyclohexanol. We observed up to an 80% suppression of the rate by tuning cavity modes to be resonant with the reactant isocyanate (NCO) stretch, the product carbonyl (CO) stretch, and cooperative reactant-solvent modes (CH). These results were interpreted using an open quantum system model that predicted resonant modifications of the vibrational distribution of reactants from canonical statistics as a result of light-matter quantum coherences, suggesting links to explore between chemistry and quantum science.

18.
ACS Omega ; 7(28): 24432-24437, 2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35874204

RESUMO

Metal-organic frameworks (MOFs) have emerged as promising tailor-designed materials for developing next-generation solid-state devices with applications in linear and nonlinear coherent optics. However, the implementation of functional devices is challenged by the notoriously difficult process of growing large MOF single crystals of high optical quality. By controlling the solvothermal synthesis conditions, we succeeded in producing large individual single crystals of the noncentrosymmetric MOF Zn(3-ptz)2 (MIRO-101) with a deformed octahedron habit and surface areas of up to 37 mm2. We measured the UV-vis absorption spectrum of individual Zn(3-ptz)2 single crystals across different lateral incidence planes. Millimeter-sized single crystals have a band gap of E g = 3.32 eV and exhibit anisotropic absorption in the band-edge region near 350 nm, whereas polycrystalline samples are fully transparent in the same frequency range. Using solid-state density functional theory (DFT), the observed size dependence in the optical anisotropy is correlated with the preferred orientation adopted by pyridyl groups under conditions of slow crystal self-assembly. Our work thus paves the way for the development of optical polarization switches based on metal-organic frameworks.

19.
Materials (Basel) ; 15(11)2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35683252

RESUMO

This article focuses on agar biopolymer films that offer promise for developing biodegradable packaging, an important solution for reducing plastics pollution. At present there is a lack of data on the mechanical performance of agar biopolymer films using a simple plasticizer. This study takes a Design of Experiments approach to analyze how agar-glycerin biopolymer films perform across a range of ingredients concentrations in terms of their strength, elasticity, and ductility. Our results demonstrate that by systematically varying the quantity of agar and glycerin, tensile properties can be achieved that are comparable to agar-based materials with more complex formulations. Not only does our study significantly broaden the amount of data available on the range of mechanical performance that can be achieved with simple agar biopolymer films, but the data can also be used to guide further optimization efforts that start with a basic formulation that performs well on certain property dimensions. We also find that select formulations have similar tensile properties to thermoplastic starch (TPS), acrylonitrile butadiene styrene (ABS), and polypropylene (PP), indicating potential suitability for select packaging applications. We use our experimental dataset to train a neural network regression model that predicts the Young's modulus, ultimate tensile strength, and elongation at break of agar biopolymer films given their composition. Our findings support the development of further data-driven design and fabrication workflows.

20.
Chem Sci ; 12(10): 3475-3482, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-34163620

RESUMO

The discovery and design of new materials with competitive optical frequency conversion efficiencies can accelerate the development of scalable photonic quantum technologies. Metal-organic framework (MOF) crystals without inversion symmetry have shown potential for these applications, given their nonlinear optical properties and the combinatorial number of possibilities for MOF self-assembly. In order to accelerate the discovery of MOF materials for quantum optical technologies, scalable computational assessment tools are needed. We develop a multi-scale methodology to study the wavefunction of entangled photon pairs generated by selected non-centrosymmetric MOF crystals via spontaneous parametric down-conversion (SPDC). Starting from an optimized crystal structure, we predict the shape of the G (2) intensity correlation function for coincidence detection of the entangled pairs, produced under conditions of collinear type-I phase matching. The effective nonlinearities and photon pair correlation times obtained are comparable to those available with inorganic crystal standards. Our work thus provides fundamental insights into the structure-property relationships for entangled photon generation with metal-organic frameworks, paving the way for the automated discovery of molecular materials for optical quantum technology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA