Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 92(15): 10521-10530, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32608226

RESUMO

The interface between two immiscible electrolyte solutions (ITIES) is ideally suited to detect redox-inactive ions by their ion transfer. Such electroanalysis, based on the Nernst-Donnan equation, has been predominantly performed using amperometry, cyclic voltammetry, or differential pulse voltammetry. Here, we introduce a new electroanalytical method based on alternating-current (AC) voltammetry with inherent advantages over traditional approaches such as avoidance of positive feedback iR compensation, a major issue for liquid|liquid electrochemical cells containing resistive organic media and interfacial areas in the cm2 and mm2 range. A theoretical background outlining the generation of the analytical signal is provided and based on extracting the component that depends on the Warburg impedance from the total impedance. The quantitative detection of a series of model redox-inactive tetraalkylammonium cations is demonstrated, with evidence provided of the transient adsorption of these cations at the interface during the course of ion transfer. Since ion transfer is diffusion-limited, by changing the voltage excitation frequency during AC voltammetry, the intensity of the Faradaic response can be enhanced at low frequencies (1 Hz) or made to disappear completely at higher frequencies (99 Hz). The latter produces an AC voltammogram equivalent to a "blank" measurement in the absence of analyte and is ideal for background subtraction. Therefore, major opportunities exist for the sensitive detection of ionic analyte when a "blank" measurement in the absence of analyte is impossible. This approach is particularly useful to deconvolute signals related to reversible electrochemical reactions from those due to irreversible processes, which do not give AC signals.

2.
PLoS Pathog ; 14(7): e1007081, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29975784

RESUMO

Lysozymes are nearly omnipresent as the first line of immune defense against microbes in animals. They exert bactericidal action through antimicrobial peptide activity and peptidoglycan hydrolysis. Gram-negative bacteria developed several weapons to battle lysozymes, including inhibitors of c-type lysozymes in the MliC/PliC family and the Neisseria adhesin complex protein (ACP). Until the recent discovery of ACP, no proteinaceous lysozyme inhibitors were reported for the genus Neisseria, including the important human pathogen N. gonorrhoeae. Here, we describe a previously unrecognized gonococcal virulence mechanism involving a protein encoded by the open reading frame ngo1063 that acts to counteract c-type Iysozyme and provides a competitive advantage in the murine model of gonorrhea. We named this protein SliC as a surface-exposed lysozyme inhibitor of c-type lysozyme. SliC displays low overall primary sequence similarity to the MliC/PliC inhibitors, but we demonstrate that it has a parallel inhibitory mechanism. Our studies provide the first evidence that bacterial proteinaceous lysozyme inhibitors protect against host lysozyme during infection based on lack of attenuation of the ΔsliC mutant in lysozyme knock-out mice, and that the conserved residues involved in lysozyme inhibition, S83 and K103, are functionally indispensable during infection in wild type mice. Recombinant SliC completely abrogated the lytic activity of human and chicken c-type lysozymes, showing a preference towards human lysozyme with an IC50 of 1.85 µM and calculated KD value of 9.2 ± 1.9 µM. In contrast, mutated SliC bearing S83A and K103A substitutions failed to protect fluorescein-labeled cell-wall from lysozyme-mediated hydrolysis. Further, we present data revealing that SliC is a surface-displayed lipoprotein released in membrane vesicles that is expressed throughout all phases of growth, in conditions relevant to different niches of the human host, and during experimental infection of the murine genital tract. SliC is also highly conserved and expressed by diverse gonococcal isolates as well as N. meningitidis, N. lactamica, and N. weaveri. This study is the first to highlight the importance of an anti-lysozyme strategy to escape the innate immune response during N. gonorrhoeae infection.


Assuntos
Proteínas de Bactérias/metabolismo , Gonorreia/metabolismo , Muramidase/metabolismo , Neisseria gonorrhoeae/metabolismo , Fatores de Virulência/metabolismo , Virulência/fisiologia , Animais , Galinhas , Humanos , Camundongos , Neisseria gonorrhoeae/patogenicidade
3.
Beilstein J Org Chem ; 11: 348-57, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25815089

RESUMO

Thin films of PEDOT synthesized on platinum single electrodes in contact with the ionic liquid 1-ethyl-2,3-dimethylimidazolium triflimide ([EMMIM]Tf2N) were studied by cyclic voltammetry, chronoamperometry, infrared spectroscopy and atomic force microscopy. It was found that the polymer grows faster on Pt(111) than on Pt(110) or Pt(100) and that the redox reactions associated with the PEDOT p-doping process are much more reversible in [EMMIM]Tf2N than in acetonitrile. Finally, the ion exchange and charge carriers' formation during the p-doping reaction of PEDOT were studied using in situ FTIR spectroscopy.

4.
Langmuir ; 28(11): 5286-94, 2012 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-22369635

RESUMO

The first part of this report studies the electrochemical properties of single-crystal platinum electrodes in acetonitrile electrolytes by means of cyclic voltammetry. Potential difference infrared spectroscopy in conjunction with linear voltammetry was used to obtain a molecular-level picture of this interface. The second part of this report studies the hydrogen evolution and the hydrogen oxidation reactions on the three low-index faces of Pt electrodes in acetonitrile electrolytes. The data (CVs and IR spectra) strongly suggest that acetonitrile and CN(-) molecules are adsorbed on single-crystal platinum electrodes in the range of -1.5 to 0.3 V versus Ag/AgCl. Those species block part of the adsorption sites for hydrogen adatoms, and they decompose on the surface in the presence of water. The nature of the cation and the presence of water strongly affect the onset of acetonitrile electrolysis and the kinetics and stability of the adsorbed species on the electrode. Finally, the hydrogen evolution and the hydrogen oxidation reactions on platinum single-crystal surfaces in acetonitrile electrolytes are strongly affected by the surface-energy state of Pt electrodes.

5.
Phys Chem Chem Phys ; 14(41): 14391-9, 2012 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-23010819

RESUMO

The first part of this communication studies the electrochemical properties of thin films of poly(3,4-ethylenedioxythiophene) (PEDOT) grown on the three basal plane platinum electrodes via cyclic voltammetry, chronoamperometry, electrochemical impedance spectroscopy and in situ FTIR spectroelectrochemistry. In the second part of this work the redox reaction of 2,5-dimercapto-1,3,4-thiadiazole (DMcT) at these platinum modified electrodes is investigated via cyclic voltammetry and electrochemical impedance spectroscopy in order to elucidate the effect of some polymer properties on its electrocatalytic behavior, such as the ionic resistance, nature of the doping ion and the structure. First of all, it was found that the ionic resistance of the PEDOT films electrochemically synthesized on platinum electrodes increases in the order Pt(100) < Pt(110) < Pt(111) and the advantages of using single crystal platinum electrodes coated with PEDOT for the IR study of individual mobile species flux and the evolution of charge carriers during the reduction process of p-doped PEDOT were proven. On the other hand, it was found that compact, rigid and low resistance PEDOT films show higher standard charge transfer rates for the DMcT redox reaction than those that have a more porous structure and higher ionic resistance. Finally, PEDOT films doped with alkaline ions are more electrocatalytic for the oxidation process of the protonated form of DMcT.

6.
J Phys Chem B ; 113(7): 1899-905, 2009 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-19199703

RESUMO

In this paper the electrochemical properties of polythiophene thin films synthesized on single-crystal platinum electrodes are studied. It was found that the electrochemical properties, ion transport kinetics, and morphology of the polythiophene films depend on the surface orientation of the single-crystal platinum electrode used for their electropolymerization. Different oxidation levels, regarded as neutral, polaron, bipolaron, and metallic states, are usually found in conjugated heterocyclic polymers. However, the transitions between the different oxidation levels were never clearly observed in cyclic voltammetry. Instead the voltammograms usually show broad oxidation and reduction peaks with some shoulders. With the use of single-crystal platinum electrodes, it was found that polythiophene has a well-defined redox process at low potential, not observed before, possibly related to the conversion from the neutral state to polarons. On the other hand, two well-defined consecutive steps were found during the ion exchange reaction of thin films of polymer, both characterized by nucleation kinetics. This is the first report of two consecutive nucleation processes during the ion exchange process of a conducting polymer. The results presented here could further illuminate the mechanism in which the electron is transported in organic semiconductor materials.


Assuntos
Membranas Artificiais , Platina/química , Polímeros/química , Polímeros/síntese química , Tiofenos/química , Tiofenos/síntese química , Eletroquímica , Eletrodos , Cinética , Oxirredução , Tamanho da Partícula , Propriedades de Superfície , Fatores de Tempo
7.
Ultrason Sonochem ; 48: 281-286, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30080552

RESUMO

The sonochemiluminescence (SCL) of luminol reaction was studied in alkaline medium using a dissolution of luminol, sodium carbonate, hydrogen peroxide and carbon tetrachloride. The presence of carbon tetrachloride enhances the SCL reaction up to allow the study of the reaction in real time using a cell phone video camera. This experimental setup allows the study of the cavitation dynamics in real time and through all the reactor, including homogeneous and heterogeneous cavitation zones. Finally, it was tested the effect of ethanol, the ionic strength and pH on the SCL.

8.
Phys Chem Chem Phys ; 10(46): 7022-30, 2008 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-19030598

RESUMO

This communication shows experimental results that clearly demonstrated the influence of the crystalline surface structure of the platinum electrode on the early stages of the electropolymerization of pyrrole in aqueous media. The platinum surface structure determines adhesion, coverage level, charge transfer properties as well as bulk properties of the synthesized film like morphology and the ion exchange kinetics during its reduction and oxidation. It is proven that the Pt(110) an Pt(111) surfaces are more suitable for obtain polypyrrole films with higher conductivity and charge-storage capacity than the Pt(100) surface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA