Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Toxicol Appl Pharmacol ; 258(1): 145-50, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22100607

RESUMO

Oxons are the bioactivated metabolites of organophosphorus insecticides formed via cytochrome P450 monooxygenase-catalyzed desulfuration of the parent compound. Oxons react covalently with the active site serine residue of serine hydrolases, thereby inactivating the enzyme. A number of serine hydrolases other than acetylcholinesterase, the canonical target of oxons, have been reported to react with and be inhibited by oxons. These off-target serine hydrolases include carboxylesterase 1 (CES1), CES2, and monoacylglycerol lipase. Carboxylesterases (CES, EC 3.1.1.1) metabolize a number of xenobiotic and endobiotic compounds containing ester, amide, and thioester bonds and are important in the metabolism of many pharmaceuticals. Monoglyceride lipase (MGL, EC 3.1.1.23) hydrolyzes monoglycerides including the endocannabinoid, 2-arachidonoylglycerol (2-AG). The physiological consequences and toxicity related to the inhibition of off-target serine hydrolases by oxons due to chronic, low level environmental exposures are poorly understood. Here, we determined the potency of inhibition (IC(50) values; 15 min preincubation, enzyme and inhibitor) of recombinant CES1, CES2, and MGL by chlorpyrifos oxon, paraoxon and methyl paraoxon. The order of potency for these three oxons with CES1, CES2, and MGL was chlorpyrifos oxon>paraoxon>methyl paraoxon, although the difference in potency for chlorpyrifos oxon with CES1 and CES2 did not reach statistical significance. We also determined the bimolecular rate constants (k(inact)/K(I)) for the covalent reaction of chlorpyrifos oxon, paraoxon and methyl paraoxon with CES1 and CES2. Consistent with the results for the IC(50) values, the order of reactivity for each of the three oxons with CES1 and CES2 was chlorpyrifos oxon>paraoxon>methyl paraoxon. The bimolecular rate constant for the reaction of chlorpyrifos oxon with MGL was also determined and was less than the values determined for chlorpyrifos oxon with CES1 and CES2 respectively. Together, the results define the kinetics of inhibition of three important hydrolytic enzymes by activated metabolites of widely used agrochemicals.


Assuntos
Carboxilesterase/antagonistas & inibidores , Hidrolases de Éster Carboxílico/antagonistas & inibidores , Clorpirifos/análogos & derivados , Inseticidas/toxicidade , Monoacilglicerol Lipases/antagonistas & inibidores , Paraoxon/análogos & derivados , Paraoxon/toxicidade , Clorpirifos/toxicidade , Humanos , Proteínas Recombinantes/antagonistas & inibidores
2.
Biochim Biophys Acta ; 1801(1): 31-41, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19761868

RESUMO

Two major isoforms of human carboxylesterases (CEs) are found in metabolically active tissues, CES1 and CES2. These hydrolytic enzymes are involved in xenobiotic and endobiotic metabolism. CES1 is abundantly expressed in human liver and monocytes/macrophages, including the THP1 cell line; CES2 is expressed in liver but not in monocytes/macrophages. The cholesteryl ester hydrolysis activity in human macrophages has been attributed to CES1. Here, we report the direct inhibitory effects of several endogenous oxysterols and fatty acids on the CE activity of THP1 monocytes/macrophages and recombinant human CES1 and CES2. Using THP1 whole-cell lysates we found: (1) 27-hydroxycholesterol (27-HC) is a potent inhibitor of carboxylesterase activity (IC50=33 nM); (2) 24(S),25-epoxycholesterol had moderate inhibitory activity (IC(50)=8.1 microM); and (3) cholesterol, 7-ketocholesterol, 22(R)-hydroxycholesterol, 24(S)-hydroxycholesterol, and 25-hydroxycholesterol each had little inhibitory activity. 27-HC was a partially noncompetitive inhibitor of recombinant CES1 (K(iapp)=10 nM) and impaired intracellular CES1 activity following treatment of intact THP1 cells. In contrast, recombinant CES2 activity was not inhibited by 27-HC, suggesting isoform-selective inhibition by 27-HC. Furthermore, unsaturated fatty acids were better inhibitors of CES1 activity than saturated fatty acids, while CES2 activity was unaffected by any fatty acid. Arachidonic acid (AA) was the most potent fatty acid inhibitor of recombinant CES1 and acted by a noncompetitive mechanism (K(iapp)=1.7 microM); when not complexed to albumin, exogenous AA penetrated intact THP1 cells and inhibited CES1. Inhibition results are discussed in light of recent structural models for CES1 that describe ligand binding sites separate from the active site. In addition, oxysterol-mediated inhibition of CES1 activity was demonstrated by pretreatment of human liver homogenates or intact THP1 cells with exogenous 27-HC, which resulted in significantly reduced hydrolysis of the pyrethroid insecticide bioresmethrin, a CES1-specific xenobiotic substrate. Collectively, these findings suggest that CE activity of recombinant CES1, cell lysates, and intact cells can be impaired by naturally occurring lipids, which may compromise the ability of CES1 to both detoxify environmental pollutants and metabolize endogenous compounds in vivo.


Assuntos
Hidrolases de Éster Carboxílico/antagonistas & inibidores , Ácidos Graxos/farmacologia , Hidroxicolesteróis/farmacologia , Macrófagos/enzimologia , Monócitos/enzimologia , Animais , Ácido Araquidônico/farmacologia , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Humanos , Hidrólise , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Monócitos/citologia , Monócitos/metabolismo , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
3.
Chem Biol Interact ; 194(1): 1-12, 2011 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-21878322

RESUMO

Oxidative stress in cells and tissues leads to the formation of an assortment of lipid electrophiles, such as the quantitatively important 4-hydroxy-2-trans-nonenal (HNE). Although this cytotoxic aldehyde is atherogenic the mechanisms involved are unclear. We hypothesize that elevated HNE levels can directly inactivate esterase and lipase activities in macrophages via protein adduction, thus generating a biochemical lesion that accelerates foam cell formation and subsequent atherosclerosis. In the present study we examined the effects of HNE treatment on esterase and lipase activities in human THP1 monocytes/macrophages at various physiological scales (i.e., pure recombinant enzymes, cell lysate, and intact living cells). The hydrolytic activities of bacterial and human carboxylesterase enzymes (pnbCE and CES1, respectively) were inactivated by HNE in vitro in a time- and concentration-dependent manner. In addition, so were the hydrolytic activities of THP1 cell lysates and intact THP1 monocytes and macrophages. A single lysine residue (Lys105) in recombinant CES1 was modified by HNE via a Michael addition reaction, whereas the lone reduced cysteine residue (Cys389) was found unmodified. The lipolytic activity of cell lysates and intact cells was more sensitive to the inhibitory effects of HNE than the esterolytic activity. Moreover, immunoblotting analysis using HNE antibodies confirmed that several cellular proteins were adducted by HNE following treatment of intact THP1 monocytes, albeit at relatively high HNE concentrations (>50µM). Unexpectedly, in contrast to CES1, the treatment of a recombinant human CES2 with HNE enhanced its enzymatic activity ∼3-fold compared to untreated enzyme. In addition, THP1 monocytes/macrophages can efficiently metabolize HNE, and glutathione conjugation of HNE is responsible for ∼43% of its catabolism. The functional importance of HNE-mediated inactivation of cellular hydrolytic enzymes with respect to atherogenesis remains obscure, although this study has taken a first step toward addressing this important issue by examining the potential of HNE to inhibit this biochemical activity in a human monocyte/macrophage cell line.


Assuntos
Aldeídos/farmacologia , Hidrolases de Éster Carboxílico/antagonistas & inibidores , Inibidores de Cisteína Proteinase/farmacologia , Macrófagos/efeitos dos fármacos , Monócitos/efeitos dos fármacos , Aldeídos/metabolismo , Aterosclerose/metabolismo , Aterosclerose/patologia , Hidrolases de Éster Carboxílico/metabolismo , Linhagem Celular , Inibidores de Cisteína Proteinase/metabolismo , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Humanos , Inflamação/metabolismo , Inflamação/patologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Macrófagos/citologia , Macrófagos/metabolismo , Monócitos/citologia , Monócitos/metabolismo , Fatores de Tempo
4.
J Pestic Sci ; 35(3): 257-264, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-25018661

RESUMO

Carboxylesterases (CES, EC 3.1.1.1) are members of a superfamily of serine hydrolases that hydrolyze ester, amide, and carbamate bonds. Several different CES genes exist in mammalian species with evidence of multiple gene duplication events occurring throughout evolutionary history. There are five CES genes reported in the Human Genome Organization database, although CES1 and CES2 are the two best characterized human genes. An emerging picture of the CES family suggests that these enzymes have dual roles in the metabolism of xenobiotic and endobiotic compounds. Pesticides, such as the pyrethroids, are important xenobiotic substrates that are metabolized by CES, whereas cholesteryl esters, triacylglycerols, and 2-arachidonoylglycerol are examples of endobiotics known to be substrates for CES. Functional studies using selective chemical inhibitors, siRNA, and gene knockout models are providing valuable insights into the physiological functions of CES, and suggest that CES may be a novel target for the treatment of diseases such as diabetes and atherosclerosis. This review will examine the known physiological functions of CES, the interactions between xenobiotics (primarily pesticides) and lipids that occur with CES enzymes, and where possible the implications that these findings may have in terms of health and disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA