Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Cell Biol Int ; 48(5): 682-694, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38420874

RESUMO

Polycladida are the only free-living flatworms with a planktonic larval stage in some species. Currently, it is not clear if a larval stage is ancestral in polyclads, and which type of larva that would be. Known polyclad larvae are Müller's larva, Kato's larva and Goette's larva, differing by body shape and the number of lobes and eyes. A valuable character for the comparison and characterisation of polyclad larval types is the ultrastructural composition of the apical organ. This organ is situated at the anterior pole of the larva and is associated with at least one ciliary tuft. The larval apical organ of Theama mediterranea features two multiciliated apical tuft sensory cells. Six unfurcated apical tuft gland cell necks are sandwiched between the apical tuft sensory cells and two anchor cells and have their cell bodies located lateral to the brain. Another type of apical gland cell necks is embedded in the anchor cells. Ventral to the apical tuft, ciliated sensory neurons are present, which are neighbouring the cell necks of two furcated apical tuft gland cells. Based on the ultrastructural organisation of the apical organ and other morphological features, like a laterally flattened wedge-shaped body and three very small lobes, we recognise the larva of T. mediterranea as a new larval type, which we name Curini-Galletti's larva after its first discoverer. The ultrastructural similarities of the apical organ in different polyclad larvae support their possible homology, that is, all polyclad larvae have likely evolved from a common larva.


Assuntos
Larva , Animais
2.
J Cell Sci ; 134(22)2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34704600

RESUMO

Osteoclasts form special integrin-mediated adhesion structures called sealing zones that enable them to adhere to and resorb bone. Sealing zones consist of densely packed podosomes tightly interconnected by actin fibers. Their formation requires the presence of the hematopoietic integrin regulator kindlin-3 (also known as Fermt3). In this study, we investigated osteoclasts and their adhesion structures in kindlin-3 hypomorphic mice expressing only 5-10% of the kindlin-3 level of wild-type mice. Low kindlin-3 expression reduces integrin activity, results in impaired osteoclast adhesion and signaling, and delays cell spreading. Despite these defects, in vitro-generated kindlin-3-hypomorphic osteoclast-like cells arrange their podosomes into adhesion patches and belts, but their podosome and actin organization is abnormal. Remarkably, kindlin-3-hypomorphic osteoclasts form sealing zones when cultured on calcified matrix in vitro and on bone surface in vivo. However, functional assays, immunohistochemical staining and electron micrographs of bone sections showed that they fail to seal the resorption lacunae properly, which is required for secreted proteinases to digest bone matrix. This results in mild osteopetrosis. Our study reveals a new, hitherto understudied function of kindlin-3 as an essential organizer of integrin-mediated adhesion structures, such as sealing zones.


Assuntos
Proteínas do Citoesqueleto , Osteoclastos , Osteopetrose , Animais , Matriz Óssea , Osso e Ossos , Proteínas do Citoesqueleto/genética , Integrinas , Camundongos , Osteopetrose/genética
3.
Gastroenterology ; 162(6): 1690-1704, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35031299

RESUMO

BACKGROUND & AIMS: Crohn's disease (CD) globally emerges with Westernization of lifestyle and nutritional habits. However, a specific dietary constituent that comprehensively evokes gut inflammation in human inflammatory bowel diseases remains elusive. We aimed to delineate how increased intake of polyunsaturated fatty acids (PUFAs) in a Western diet, known to impart risk for developing CD, affects gut inflammation and disease course. We hypothesized that the unfolded protein response and antioxidative activity of glutathione peroxidase 4 (GPX4), which are compromised in human CD epithelium, compensates for metabolic perturbation evoked by dietary PUFAs. METHODS: We phenotyped and mechanistically dissected enteritis evoked by a PUFA-enriched Western diet in 2 mouse models exhibiting endoplasmic reticulum (ER) stress consequent to intestinal epithelial cell (IEC)-specific deletion of X-box binding protein 1 (Xbp1) or Gpx4. We translated the findings to human CD epithelial organoids and correlated PUFA intake, as estimated by a dietary questionnaire or stool metabolomics, with clinical disease course in 2 independent CD cohorts. RESULTS: PUFA excess in a Western diet potently induced ER stress, driving enteritis in Xbp1-/-IEC and Gpx4+/-IEC mice. ω-3 and ω-6 PUFAs activated the epithelial endoplasmic reticulum sensor inositol-requiring enzyme 1α (IRE1α) by toll-like receptor 2 (TLR2) sensing of oxidation-specific epitopes. TLR2-controlled IRE1α activity governed PUFA-induced chemokine production and enteritis. In active human CD, ω-3 and ω-6 PUFAs instigated epithelial chemokine expression, and patients displayed a compatible inflammatory stress signature in the serum. Estimated PUFA intake correlated with clinical and biochemical disease activity in a cohort of 160 CD patients, which was similarly demonstrable in an independent metabolomic stool analysis from 199 CD patients. CONCLUSIONS: We provide evidence for the concept of PUFA-induced metabolic gut inflammation which may worsen the course of human CD. Our findings provide a basis for targeted nutritional therapy.


Assuntos
Doença de Crohn , Enterite , Ácidos Graxos Ômega-3 , Animais , Doença de Crohn/tratamento farmacológico , Endorribonucleases , Enterite/induzido quimicamente , Enterite/tratamento farmacológico , Ácidos Graxos Insaturados , Humanos , Inflamação/tratamento farmacológico , Camundongos , Proteínas Serina-Treonina Quinases , Receptor 2 Toll-Like
4.
Traffic ; 21(1): 60-75, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31808235

RESUMO

Lysosomes are key cellular catabolic centers that also perform fundamental metabolic, signaling and quality control functions. Lysosomes are not static and they respond dynamically to intra- and extracellular stimuli triggering changes in organelle numbers, size and position. Such physical changes have a strong impact on lysosomal activity ultimately influencing cellular homeostasis. In this review, we summarize the current knowledge on lysosomal size regulation, on its physiological role(s) and association to several disease conditions.


Assuntos
Lisossomos , Transdução de Sinais , Autofagia , Homeostase
5.
Proc Natl Acad Sci U S A ; 116(10): 4297-4306, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30782790

RESUMO

The flatworm Macrostomum lignano features a duo-gland adhesive system that allows it to repeatedly attach to and release from substrates in seawater within a minute. However, little is known about the molecules involved in this temporary adhesion. In this study, we show that the attachment of M. lignano relies on the secretion of two large adhesive proteins, M. lignano adhesion protein 1 (Mlig-ap1) and Mlig-ap2. We revealed that both proteins are expressed in the adhesive gland cells and that their distribution within the adhesive footprints was spatially restricted. RNA interference knockdown experiments demonstrated the essential function of these two proteins in flatworm adhesion. Negatively charged modified sugars in the surrounding water inhibited flatworm attachment, while positively charged molecules impeded detachment. In addition, we found that M. lignano could not adhere to strongly hydrated surfaces. We propose an attachment-release model where Mlig-ap2 attaches to the substrate and Mlig-ap1 exhibits a cohesive function. A small negatively charged molecule is secreted that interferes with Mlig-ap1, inducing detachment. These findings are of relevance for fundamental adhesion science and efforts to mitigate biofouling. Further, this model of flatworm temporary adhesion may serve as the starting point for the development of synthetic reversible adhesion systems for medicinal and industrial applications.


Assuntos
Adesão Celular/fisiologia , Gônadas/metabolismo , Proteínas de Helminto/metabolismo , Platelmintos/fisiologia , Adesivos , Animais , Feminino , Técnicas de Silenciamento de Genes , Gônadas/citologia , Proteínas de Helminto/genética , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Platelmintos/citologia , Platelmintos/metabolismo , Interferência de RNA , Transdução de Sinais
6.
Traffic ; 20(9): 674-696, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31314175

RESUMO

Mechanisms that control lysosomal function are essential for cellular homeostasis. Lysosomes adapt in size and number to cellular needs but little is known about the underlying molecular mechanism. We demonstrate that the late endosomal/lysosomal multimeric BLOC-1-related complex (BORC) regulates the size of these organelles via PIKfyve-dependent phosphatidylinositol-3,5-bisphosphate [PI(3,5)P2 ] production. Deletion of the core BORC component Diaskedin led to increased levels of PI(3,5)P2 , suggesting activation of PIKfyve, and resulted in enhanced lysosomal reformation and subsequent reduction in lysosomal size. This process required AMP-activated protein kinase (AMPK), a known PIKfyve activator, and was additionally dependent on the late endosomal/lysosomal adaptor, mitogen-activated protein kinases and mechanistic target of rapamycin activator (LAMTOR/Ragulator) complex. Consistently, in response to glucose limitation, AMPK activated PIKfyve, which induced lysosomal reformation with increased baseline autophagy and was coupled to a decrease in lysosomal size. These adaptations of the late endosomal/lysosomal system reversed under glucose replete growth conditions. In summary, our results demonstrate that BORC regulates lysosomal reformation and size in response to glucose availability.


Assuntos
Endossomos/metabolismo , Proteínas de Membrana Lisossomal/metabolismo , Lisossomos/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Animais , Autofagia , Células HEK293 , Células HeLa , Humanos , Proteína 1 de Membrana Associada ao Lisossomo/metabolismo , Proteínas de Membrana Lisossomal/genética , Sistema de Sinalização das MAP Quinases , Camundongos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Quinases/metabolismo , Proteínas/genética , Proteínas/metabolismo
7.
J Biol Chem ; 295(34): 12028-12044, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32611771

RESUMO

The endosomal sorting complexes required for transport (ESCRT) mediate evolutionarily conserved membrane remodeling processes. Here, we used budding yeast (Saccharomyces cerevisiae) to explore how the ESCRT machinery contributes to plasma membrane (PM) homeostasis. We found that in response to reduced membrane tension and inhibition of TOR complex 2 (TORC2), ESCRT-III/Vps4 assemblies form at the PM and help maintain membrane integrity. In turn, the growth of ESCRT mutants strongly depended on TORC2-mediated homeostatic regulation of sphingolipid (SL) metabolism. This was caused by calcineurin-dependent dephosphorylation of Orm2, a repressor of SL biosynthesis. Calcineurin activity impaired Orm2 export from the endoplasmic reticulum (ER) and thereby hampered its subsequent endosome and Golgi-associated degradation (EGAD). The ensuing accumulation of Orm2 at the ER in ESCRT mutants necessitated TORC2 signaling through its downstream kinase Ypk1, which repressed Orm2 and prevented a detrimental imbalance of SL metabolism. Our findings reveal compensatory cross-talk between the ESCRT machinery, calcineurin/TORC2 signaling, and the EGAD pathway important for the regulation of SL biosynthesis and the maintenance of PM homeostasis.


Assuntos
Membrana Celular/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Membrana Celular/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Mutação , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
Int J Mol Sci ; 22(22)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34830109

RESUMO

Many free-living flatworms have evolved a temporary adhesion system, which allows them to quickly attach to and release from diverse substrates. In the marine Macrostomum lignano, the morphology of the adhesive system and the adhesion-related proteins have been characterised. However, little is known about how temporary adhesion is performed in other aquatic environments. Here, we performed a 3D reconstruction of the M. lignano adhesive organ and compared it to the morphology of five selected Macrostomum, representing two marine, one brackish, and two freshwater species. We compared the protein domains of the two adhesive proteins, as well as an anchor cell-specific intermediate filament. We analysed the gene expression of these proteins by in situ hybridisation and performed functional knockdowns with RNA interference. Remarkably, there are almost no differences in terms of morphology, protein regions, and gene expression based on marine, brackish, and freshwater habitats. This implies that glue components produced by macrostomids are conserved among species, and this set of two-component glue functions from low to high salinity. These findings could contribute to the development of novel reversible biomimetic glues that work in all wet environments and could have applications in drug delivery systems, tissue adhesives, or wound dressings.


Assuntos
Adesivos/química , Materiais Biomiméticos/química , Proteínas de Helminto , Platelmintos , Estruturas Animais , Animais , Água Doce , Proteínas de Helminto/química , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo , Platelmintos/química , Platelmintos/genética , Platelmintos/metabolismo , Água do Mar
9.
J Pharm Technol ; 37(2): 95-106, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34752567

RESUMO

Objective: To review the role of pharmacists in educating and monitoring patients with chronic obstructive pulmonary disease (COPD) on inhalation technique. Data Sources: A PubMed search (January 2000 to May 2020) was performed using the following keywords and associated medical subject headings: adherence, chronic obstructive pulmonary disease/COPD, education, inhaler, pharmacist, and technique. Study Selection and Data Extraction: The search was conducted to identify English language articles highlighting the importance of correct inhaler technique in COPD management and benefits of pharmacist inhaler training such as improved adherence, quality of life (QoL), and disease control. Randomized controlled trials, retrospective studies, observational studies, systematic reviews, and meta-analysis reporting pharmacist training were included. Data Synthesis: This review summarizes that incorrect inhaler use negatively affects treatment outcomes, prognosis, and QoL. Pharmacists are in a unique position to educate and monitor patients with COPD on optimal inhaler technique and an individualized, multifactorial approach to COPD management involving pharmacists could provide cost-effective patient care and improve adherence and minimize inhaler misuse. Several strategies used by pharmacists can optimize patient inhaler use, such as face-to-face technique demonstrations, the "teach-back" method, telemonitoring, instructional videos, or informational leaflets. An individualized action plan involving education and regular monitoring of inhaler use further enhances optimal adherence and disease management. Conclusions: As pharmacists are easily accessible to both patients and health care providers, they are ideally placed to play an important role in the enhancement of education on, and continuous assessment of, optimal inhaler technique, thereby improving adherence, disease control, and QoL.

10.
Traffic ; 19(8): 639-649, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29673018

RESUMO

Immunogold labeling of permeabilized whole-mount cells or thin-sectioned material is widely used for the subcellular localization of biomolecules at the high spatial resolution of electron microscopy (EM). Those approaches are well compatible with either 3-dimensional (3D) reconstruction of organelle morphology and antigen distribution or with rapid cryofixation-but not easily with both at once. We describe here a specimen preparation and labeling protocol for animal cell cultures, which represents a novel blend of specifically adapted versions of established techniques. It combines the virtues of reliably preserved organelle ultrastructure, as trapped by rapid freezing within milliseconds followed by freeze-substitution and specimen rehydration, with the advantages of robust labeling of intracellular constituents in 3D through means of pre-embedding NANOGOLD-silver immunocytochemistry. So obtained thin and semi-thick epoxy resin sections are suitable for transmission EM imaging, as well as tomographic reconstruction and modeling of labeling patterns in the 3D cellular context.


Assuntos
Microscopia Eletrônica de Transmissão/métodos , Microscopia Imunoeletrônica/métodos , Tomografia/métodos , Animais , Antígenos/química , Células CACO-2 , Criopreservação/métodos , Compostos de Epóxi/química , Congelamento , Ouro/química , Células HeLa , Humanos , Imuno-Histoquímica , Nanopartículas/química , Pressão , Prata/química
11.
Dev Biol ; 448(2): 183-198, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30471266

RESUMO

Ascidian papillae (palps) constitute a transient sensory adhesive organ that assures larval settlement and the onset of metamorphosis to the filterfeeding adult. Despite the importance of papillae for the ascidian development, their cellular composition is only roughly described. For Ciona intestinalis/robusta, a clear definition of cell numbers and discriminative molecular markers for the different cell types is missing. While some attention was given to neural cell types and their connectivity little is known about the adhesive producing collocytes. We converge serial-section electron microscopy and confocal imaging with various marker combinations to document the 3D organization of the Ciona papillae. We show the papillar development with 4 axial columnar cells (ACCs), 4 lateral primary sensory neurons (PSNs) and 12 central collocytes (CCs). We propose molecular markers for each cell type including novel ones for collocytes. The subcellular characteristics are suggestive of their role in papillar function: the ACCs featuring apical protrusions and microvilli, also contain neuroactive and endocytic vesicles indicative of a chemosensory role. They are clearly distinct from the ciliated glutamatergic PSNs. CCs encircle the ACCs and contain microvilli, small endocytic vesicles and notably a large numbers of adhesive granules that, according to element analysis and histochemistry, contain glycoproteins. Interestingly, we detect two different types of collocyte granules, one of them containing fibrous material and larger quantities of polysaccharides. Consistently, carbohydrate specific lectins label the papillar apex, the granules within CCs and the adhesive plaques upon larval attachment. We further propose CCs to derive from an evolutionary ancient neurosecretory cell type. Our findings contribute to understanding the development of the anterior ('new head') region of the Ciona larva and notably the adhesive secreting cells which has implications for developmental biology, cell differentiation and evolution, but also bioadhesion.


Assuntos
Ciona intestinalis/anatomia & histologia , Ciona intestinalis/citologia , Adesividade , Animais , Biomarcadores/metabolismo , Ciona intestinalis/ultraestrutura , Grânulos Citoplasmáticos/metabolismo , Microtúbulos/metabolismo , Aglutinina de Amendoim/metabolismo , Células Receptoras Sensoriais/metabolismo , Sinaptotagminas/metabolismo
12.
Traffic ; 18(7): 453-464, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28407399

RESUMO

Microvillus inclusion disease (MVID) is a congenital enteropathy characterized by accumulation of vesiculo-tubular endomembranes in the subapical cytoplasm of enterocytes, historically termed "secretory granules." However, neither their identity nor pathophysiological significance is well defined. Using immunoelectron microscopy and tomography, we studied biopsies from MVID patients (3× Myosin 5b mutations and 1× Syntaxin3 mutation) and compared them to controls and genome-edited CaCo2 cell models, harboring relevant mutations. Duodenal biopsies from 2 patients with novel Myosin 5b mutations and typical clinical symptoms showed unusual ultrastructural phenotypes: aberrant subapical vesicles and tubules were prominent in the enterocytes, though other histological hallmarks of MVID were almost absent (ectopic intra-/intercellular microvilli, brush border atrophy). We identified these enigmatic vesiculo-tubular organelles as Rab11-Rab8-positive recycling compartments of altered size, shape and location harboring the apical SNARE Syntaxin3, apical transporters sodium-hydrogen exchanger 3 (NHE3) and cystic fibrosis transmembrane conductance regulator. Our data strongly indicate that in MVID disrupted trafficking between cargo vesicles and the apical plasma membrane is the primary cause of a defect of epithelial polarity and subsequent facultative loss of brush border integrity, leading to malabsorption. Furthermore, they support the notion that mislocalization of transporters, such as NHE3 substantially contributes to the reported sodium loss diarrhea.


Assuntos
Enterócitos/metabolismo , Síndromes de Malabsorção/metabolismo , Microvilosidades/patologia , Mucolipidoses/metabolismo , Vesículas Secretórias/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Células CACO-2 , Membrana Celular/metabolismo , Enterócitos/ultraestrutura , Humanos , Síndromes de Malabsorção/genética , Masculino , Microvilosidades/genética , Microvilosidades/metabolismo , Mucolipidoses/genética , Mutação , Miosina Tipo V/genética , Transporte Proteico , Proteínas Qa-SNARE/genética , Vesículas Secretórias/ultraestrutura
13.
Gastroenterology ; 155(6): 1883-1897.e10, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30144427

RESUMO

BACKGROUND & AIMS: Inactivating mutations in MYO5B cause microvillus inclusion disease (MVID), but the physiological cause of the diarrhea associated with this disease is unclear. We investigated whether loss of MYO5B results in aberrant expression of apical enterocyte transporters. METHODS: We studied alterations in apical membrane transporters in MYO5B-knockout mice, as well as mice with tamoxifen-inducible, intestine-specific disruption of Myo5b (VilCreERT2;Myo5bflox/flox mice) or those not given tamoxifen (controls). Intestinal tissues were collected from mice and analyzed by immunostaining, immunoelectron microscopy, or cultured enteroids were derived. Functions of brush border transporters in intestinal mucosa were measured in Ussing chambers. We obtained duodenal biopsy specimens from individuals with MVID and individuals without MVID (controls) and compared transporter distribution by immunocytochemistry. RESULTS: Compared to intestinal tissues from littermate controls, intestinal tissues from MYO5B-knockout mice had decreased apical localization of SLC9A3 (also called NHE3), SLC5A1 (also called SGLT1), aquaporin (AQP) 7, and sucrase isomaltase, and subapical localization of intestinal alkaline phosphatase and CDC42. However, CFTR was present on apical membranes of enterocytes from MYO5B knockout and control mice. Intestinal biopsies from patients with MVID had subapical localization of NHE3, SGLT1, and AQP7, but maintained apical CFTR. After tamoxifen administration, VilCreERT2;Myo5bflox/flox mice lost apical NHE3, SGLT1, DRA, and AQP7, similar to germline MYO5B knockout mice. Intestinal tissues from VilCreERT2;Myo5bflox/flox mice had increased CFTR in crypts and CFTR localized to the apical membranes of enterocytes. Intestinal mucosa from VilCreERT2;Myo5bflox/flox mice given tamoxifen did not have an intestinal barrier defect, based on Ussing chamber analysis, but did have decreased SGLT1 activity and increased CFTR activity. CONCLUSIONS: Although trafficking of many apical transporters is regulated by MYO5B, trafficking of CFTR is largely independent of MYO5B. Decreased apical localization of NHE3, SGLT1, DRA, and AQP7 might be responsible for dysfunctional water absorption in enterocytes of patients with MVID. Maintenance of apical CFTR might exacerbate water loss by active secretion of chloride into the intestinal lumen.


Assuntos
Cloretos/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Enterócitos/metabolismo , Síndromes de Malabsorção/genética , Microvilosidades/patologia , Mucolipidoses/genética , Miosina Tipo V/genética , Trocadores de Sódio-Hidrogênio/metabolismo , Animais , Aquaporinas/metabolismo , Duodeno/metabolismo , Duodeno/patologia , Inativação Gênica , Humanos , Mucosa Intestinal , Intestinos/citologia , Intestinos/patologia , Síndromes de Malabsorção/patologia , Camundongos , Camundongos Knockout , Microvilosidades/genética , Mucolipidoses/patologia , Transporte Proteico , Transportador 1 de Glucose-Sódio/metabolismo , Trocador 3 de Sódio-Hidrogênio/metabolismo , Complexo Sacarase-Isomaltase/metabolismo , Tamoxifeno/administração & dosagem
14.
Development ; 143(9): 1547-59, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-26965373

RESUMO

Skeletal muscle excitation-contraction (EC) coupling is independent of calcium influx. In fact, alternative splicing of the voltage-gated calcium channel CaV1.1 actively suppresses calcium currents in mature muscle. Whether this is necessary for normal development and function of muscle is not known. However, splicing defects that cause aberrant expression of the calcium-conducting developmental CaV1.1e splice variant correlate with muscle weakness in myotonic dystrophy. Here, we deleted CaV1.1 (Cacna1s) exon 29 in mice. These mice displayed normal overall motor performance, although grip force and voluntary running were reduced. Continued expression of the developmental CaV1.1e splice variant in adult mice caused increased calcium influx during EC coupling, altered calcium homeostasis, and spontaneous calcium sparklets in isolated muscle fibers. Contractile force was reduced and endurance enhanced. Key regulators of fiber type specification were dysregulated and the fiber type composition was shifted toward slower fibers. However, oxidative enzyme activity and mitochondrial content declined. These findings indicate that limiting calcium influx during skeletal muscle EC coupling is important for the secondary function of the calcium signal in the activity-dependent regulation of fiber type composition and to prevent muscle disease.


Assuntos
Potenciais de Ação/fisiologia , Canais de Cálcio Tipo L/genética , Acoplamento Excitação-Contração/genética , Fibras Musculares de Contração Rápida/citologia , Fibras Musculares de Contração Lenta/citologia , Debilidade Muscular/genética , Músculo Esquelético/embriologia , Processamento Alternativo/genética , Animais , Cálcio/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fibras Musculares de Contração Rápida/fisiologia , Fibras Musculares de Contração Lenta/fisiologia , Debilidade Muscular/metabolismo , Isoformas de Proteínas/genética
15.
Proc Natl Acad Sci U S A ; 112(40): 12408-13, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26392529

RESUMO

Microvillus inclusion disease (MVID) is a rare intestinal enteropathy with an onset within a few days to months after birth, resulting in persistent watery diarrhea. Mutations in the myosin Vb gene (MYO5B) have been identified in the majority of MVID patients. However, the exact pathophysiology of MVID still remains unclear. To address the specific role of MYO5B in the intestine, we generated an intestine-specific conditional Myo5b-deficient (Myo5bfl/fl;Vil-CreERT2) mouse model. We analyzed intestinal tissues and cultured organoids of Myo5bfl/fl;Vil-CreERT2 mice by electron microscopy, immunofluorescence, and immunohistochemistry. Our data showed that Myo5bfl/fl;Vil-CreERT2 mice developed severe diarrhea within 4 d after tamoxifen induction. Periodic Acid Schiff and alkaline phosphatase staining revealed subapical accumulation of intracellular vesicles in villus enterocytes. Analysis by electron microscopy confirmed an almost complete absence of apical microvilli, the appearance of microvillus inclusions, and enlarged intercellular spaces in induced Myo5bfl/fl;Vil-CreERT2 intestines. In addition, we determined that MYO5B is involved not only in apical but also basolateral trafficking of proteins. The analysis of the intestine during the early onset of the disease revealed that subapical accumulation of secretory granules precedes occurrence of microvillus inclusions, indicating involvement of MYO5B in early differentiation of epithelial cells. By comparing our data with a novel MVID patient, we conclude that our mouse model completely recapitulates the intestinal phenotype of human MVID. This includes severe diarrhea, loss of microvilli, occurrence of microvillus inclusions, and subapical secretory granules. Thus, loss of MYO5B disturbs both apical and basolateral trafficking of proteins and causes MVID in mice.


Assuntos
Síndromes de Malabsorção/metabolismo , Microvilosidades/patologia , Mucolipidoses/metabolismo , Miosina Tipo V/metabolismo , Animais , Modelos Animais de Doenças , Enterócitos/metabolismo , Enterócitos/patologia , Enterócitos/ultraestrutura , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Células Epiteliais/ultraestrutura , Feminino , Humanos , Imuno-Histoquímica , Mucosa Intestinal/metabolismo , Intestinos/patologia , Intestinos/ultraestrutura , Síndromes de Malabsorção/induzido quimicamente , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Knockout , Camundongos Transgênicos , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Microvilosidades/metabolismo , Microvilosidades/ultraestrutura , Mucolipidoses/induzido quimicamente , Miosina Tipo V/genética , Técnicas de Cultura de Órgãos , Transporte Proteico/genética , Transporte Proteico/fisiologia , Tamoxifeno
16.
Traffic ; 16(6): 617-34, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25677580

RESUMO

The late endosomal adaptor protein LAMTOR2/p14 is essential for tissue homeostasis by controlling MAPK and mTOR signaling, which in turn regulate cell growth and proliferation, migration and spreading. Moreover, LAMTOR2 critically controls architecture and function of the endocytic system, including epidermal growth factor receptor (EGFR) degradation in lysosomes, positioning of late endosomes and defense against intracellular pathogens. Here we describe the multifaceted ultrastructural phenotype of the endo/lysosomal system of LAMTOR2-deficient mouse embryonic fibroblasts. Quantitative (immuno-)electron microscopy of cryo-fixed samples revealed significantly reduced numbers of recycling tubules emanating from maturing multivesicular bodies (MVB). Instead, a distinct halo of vesicles surrounded MVB, tentatively interpreted as detached, jammed recycling tubules. These morphological changes in LAMTOR2-deficient cells correlated with the presence of growth factors (e.g. EGF), but were similarly induced in control cells by inactivating mTOR. Furthermore, proper transferrin receptor trafficking and recycling were apparently dependent on an intact LAMTOR complex. Finally, a severe imbalance in the relative proportions of endo/lysosomes was found in LAMTOR2-deficient cells, resulting from increased amounts of mature MVB and (autophago)lysosomes. These observations suggest that the LAMTOR/Ragulator complex is required not only for maintaining the homeostasis of endo/lysosomal subpopulations but also contributes to the proper formation of MVB-recycling tubules, and regulation of membrane/cargo recycling from MVB.


Assuntos
Endossomos/metabolismo , Lisossomos/metabolismo , Proteínas/metabolismo , Animais , Linhagem Celular , Endossomos/ultraestrutura , Fibroblastos/metabolismo , Fibroblastos/ultraestrutura , Lisossomos/ultraestrutura , Camundongos , Corpos Multivesiculares/metabolismo , Corpos Multivesiculares/ultraestrutura , Transporte Proteico , Proteínas/genética
17.
Hum Mutat ; 38(4): 365-372, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28181337

RESUMO

We identified two unrelated consanguineous families with three children affected by the rare association of congenital nephrotic syndrome (CNS) diagnosed in the first days of life, of hypogonadism, and of prenatally detected adrenal calcifications, associated with congenital adrenal insufficiency in one case. Using exome sequencing and targeted Sanger sequencing, two homozygous truncating mutations, c.1513C>T (p.Arg505*) and c.934delC (p.Leu312Phefs*30), were identified in SGPL1-encoding sphingosine-1-phosphate (S1P) lyase 1. SGPL1 catalyzes the irreversible degradation of endogenous and dietary S1P, the final step of sphingolipid catabolism, and of other phosphorylated long-chain bases. S1P is an intracellular and extracellular signaling molecule involved in angiogenesis, vascular maturation, and immunity. The levels of SGPL1 substrates, S1P, and sphingosine were markedly increased in the patients' blood and fibroblasts, as determined by liquid chromatography-tandem mass spectrometry. Vascular alterations were present in a patient's renal biopsy, in line with changes seen in Sgpl1 knockout mice that are compatible with a developmental defect in vascular maturation. In conclusion, loss of SGPL1 function is associated with CNS, adrenal calcifications, and hypogonadism.


Assuntos
Doenças das Glândulas Suprarrenais/genética , Aldeído Liases/genética , Calcinose/genética , Mutação , Síndrome Nefrótica/genética , Doenças das Glândulas Suprarrenais/congênito , Doenças das Glândulas Suprarrenais/enzimologia , Adulto , Aldeído Liases/deficiência , Animais , Sequência de Bases , Calcinose/enzimologia , Consanguinidade , Feminino , Humanos , Lactente , Lisofosfolipídeos/sangue , Lisofosfolipídeos/metabolismo , Masculino , Camundongos Knockout , Síndrome Nefrótica/congênito , Síndrome Nefrótica/enzimologia , Linhagem , Análise de Sequência de DNA/métodos , Esfingosina/análogos & derivados , Esfingosina/sangue , Esfingosina/metabolismo
18.
Traffic ; 15(1): 22-42, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24138727

RESUMO

Microvillus inclusion disease (MVID) is a congenital enteropathy characterized by loss of apical microvilli and formation of cytoplasmic inclusions lined by microvilli in enterocytes. MVID is caused by mutations in the MYO5B gene, coding for the myosin Vb motor protein. Although myosin Vb is implicated in the organization of intracellular transport and cell surface polarity in epithelial cells, its precise role in the pathogenesis of MVID is unknown. We performed correlative immunohistochemistry analyses of sections from duodenal biopsies of a MVID patient, compound heterozygous for two novel MYO5B mutations, predicting loss of function of myosin Vb in duodenal enterocytes together with a stable MYO5B CaCo2 RNAi cell system. Our findings show that myosin Vb-deficient enterocytes display disruption of cell polarity as reflected by mislocalized apical and basolateral transporter proteins, altered distribution of certain endosomal/lysosomal constituents including Rab GTPases. Together, this severe disturbance of epithelial cell function could shed light on the pathology and symptoms of MVID.


Assuntos
Polaridade Celular , Síndromes de Malabsorção/metabolismo , Microvilosidades/patologia , Mucolipidoses/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo V/metabolismo , Linhagem Celular Tumoral , Enterócitos/metabolismo , Enterócitos/patologia , Heterozigoto , Humanos , Recém-Nascido , Síndromes de Malabsorção/diagnóstico , Síndromes de Malabsorção/genética , Masculino , Microvilosidades/genética , Microvilosidades/metabolismo , Mucolipidoses/diagnóstico , Mucolipidoses/genética , Mutação , Cadeias Pesadas de Miosina/genética , Miosina Tipo V/genética , Transporte Proteico
19.
Traffic ; 14(8): 886-94, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23631675

RESUMO

Electrospun nanofibres are an excellent cell culture substrate, enabling the fast and non-disruptive harvest and transfer of adherent cells for microscopical and biochemical analyses. Metabolic activity and cellular structures are maintained during the only half a minute-long harvest and transfer process. We show here that such samples can be optimally processed by means of cryofixation combined either with freeze-substitution, sample rehydration and cryosection-immunolabelling or with freeze-fracture replica-immunolabelling. Moreover, electrospun fibre substrates are equally suitable for complementary approaches, such as biochemistry, fluorescence microscopy and cytochemistry.


Assuntos
Microscopia Crioeletrônica/métodos , Células CACO-2 , Espaço Extracelular/química , Gelatina/química , Células HeLa , Humanos , Imuno-Histoquímica/métodos , Nanofibras/química
20.
Gastroenterology ; 147(1): 65-68.e10, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24726755

RESUMO

Microvillus inclusion disease (MVID) is a disorder of intestinal epithelial differentiation characterized by life-threatening intractable diarrhea. MVID can be diagnosed based on loss of microvilli, microvillus inclusions, and accumulation of subapical vesicles. Most patients with MVID have mutations in myosin Vb that cause defects in recycling of apical vesicles. Whole-exome sequencing of DNA from patients with variant MVID showed homozygous truncating mutations in syntaxin 3 (STX3). STX3 is an apical receptor involved in membrane fusion of apical vesicles in enterocytes. Patient-derived organoid cultures and overexpression of truncated STX3 in Caco-2 cells recapitulated most characteristics of variant MVID. We conclude that loss of STX3 function causes variant MVID.


Assuntos
Síndromes de Malabsorção/genética , Microvilosidades/patologia , Mucolipidoses/genética , Mutação/genética , Proteínas Qa-SNARE/genética , Biópsia , Células CACO-2 , Duodeno/patologia , Feminino , Humanos , Lactente , Mucosa Intestinal/patologia , Síndromes de Malabsorção/patologia , Masculino , Microvilosidades/genética , Mucolipidoses/patologia , Técnicas de Cultura de Órgãos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA