Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 186(12): 2501-2505, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37295394

RESUMO

Juneteenth commemorates the freeing of the last large group of enslaved people in 1865 at the end of the American Civil War. We asked several Black scientists what Juneteenth means to them in the context of science, technology, engineering, mathematics, and medicine (STEMM)? Their answers run the emotional gamut.


Assuntos
Ciência , Humanos , Tecnologia , Engenharia , Matemática , População Negra
2.
J Neurosci ; 36(4): 1324-35, 2016 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-26818519

RESUMO

Aberrant gene expression within the hippocampus has recently been implicated in the pathogenesis of obesity-induced memory impairment. Whether a dysregulation of epigenetic modifications mediates this disruption in gene transcription has yet to be established. Here we report evidence of obesity-induced alterations in DNA methylation of memory-associated genes, including Sirtuin 1 (Sirt1), within the hippocampus, and thus offer a novel mechanism by which SIRT1 expression within the hippocampus is suppressed during obesity. Forebrain neuron-specific Sirt1 knock-out closely recapitulated the memory deficits exhibited by obese mice, consistent with the hypothesis that the high-fat diet-mediated reduction of hippocampal SIRT1 could be responsible for obesity-linked memory impairment. Obese mice fed a diet supplemented with the SIRT1-activating molecule resveratrol exhibited increased hippocampal SIRT1 activity and preserved hippocampus-dependent memory, further strengthening this conclusion. Thus, our findings suggest that the memory-impairing effects of diet-induced obesity may potentially be mediated by neuroepigenetic dysregulation of SIRT1 within the hippocampus. SIGNIFICANCE STATEMENT: Previous studies have implicated transcriptional dysregulation within the hippocampus as being a relevant pathological concomitant of obesity-induced memory impairment, yet a deeper understanding of the basis for, and etiological significance of, transcriptional dysregulation in this context is lacking. Here we present the first evidence of epigenetic dysregulation (i.e., altered DNA methylation and hydroxymethylation) of memory-related genes, including Sirt1, within the hippocampus of obese mice. Furthermore, experiments using transgenic and pharmacological approaches strongly implicate reduced hippocampal SIRT1 as being a principal pathogenic mediator of obesity-induced memory impairment. This paper offers a novel working model that may serve as a conceptual basis for the development of therapeutic interventions for obesity-induced memory impairment.


Assuntos
Hipocampo/metabolismo , Transtornos da Memória/etiologia , Neurônios/metabolismo , Obesidade/complicações , Obesidade/fisiopatologia , Sirtuína 1/metabolismo , Animais , Antioxidantes/farmacologia , Metilação de DNA/efeitos dos fármacos , Metilação de DNA/genética , Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais , Modelos Animais de Doenças , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/genética , Comportamento Exploratório/efeitos dos fármacos , Comportamento Exploratório/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Insulina/metabolismo , Masculino , Transtornos da Memória/dietoterapia , Transtornos da Memória/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Obesidade/induzido quimicamente , Prosencéfalo/patologia , Reconhecimento Psicológico/efeitos dos fármacos , Reconhecimento Psicológico/fisiologia , Resveratrol , Sirtuína 1/genética , Memória Espacial/efeitos dos fármacos , Memória Espacial/efeitos da radiação , Estilbenos/farmacologia , Fatores de Tempo
3.
Nat Commun ; 15(1): 4646, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38821928

RESUMO

AgRP neurons in the arcuate nucleus of the hypothalamus (ARC) coordinate homeostatic changes in appetite associated with fluctuations in food availability and leptin signaling. Identifying the relevant transcriptional regulatory pathways in these neurons has been a priority, yet such attempts have been stymied due to their low abundance and the rich cellular diversity of the ARC. Here we generated AgRP neuron-specific transcriptomic and chromatin accessibility profiles from male mice during three distinct hunger states of satiety, fasting-induced hunger, and leptin-induced hunger suppression. Cis-regulatory analysis of these integrated datasets enabled the identification of 18 putative hunger-promoting and 29 putative hunger-suppressing transcriptional regulators in AgRP neurons, 16 of which were predicted to be transcriptional effectors of leptin. Within our dataset, Interferon regulatory factor 3 (IRF3) emerged as a leading candidate mediator of leptin-induced hunger-suppression. Measures of IRF3 activation in vitro and in vivo reveal an increase in IRF3 nuclear occupancy following leptin administration. Finally, gain- and loss-of-function experiments in vivo confirm the role of IRF3 in mediating the acute satiety-evoking effects of leptin in AgRP neurons. Thus, our findings identify IRF3 as a key mediator of the acute hunger-suppressing effects of leptin in AgRP neurons.


Assuntos
Fome , Fator Regulador 3 de Interferon , Leptina , Neurônios , Animais , Masculino , Camundongos , Proteína Relacionada com Agouti/metabolismo , Proteína Relacionada com Agouti/genética , Núcleo Arqueado do Hipotálamo/metabolismo , Cromatina , Epigênese Genética , Jejum , Regulação da Expressão Gênica , Fome/fisiologia , Fator Regulador 3 de Interferon/metabolismo , Fator Regulador 3 de Interferon/genética , Leptina/metabolismo , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Transdução de Sinais , Transcriptoma
4.
Neurobiol Learn Mem ; 98(1): 25-32, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22542746

RESUMO

Mounting evidence has established that diet-induced obesity (DIO) is associated with deficits in hippocampus-dependent memory. The bulk of research studies dealing with this topic have utilized rats fed a high-fat diet as an experimental model. To date, there has been a paucity of research studies that have established whether the memory deficits exhibited in DIO rats can be recapitulated in mice. Moreover, the majority of experiments that have evaluated memory performance in rodent models of DIO have utilized memory tests that are essentially aversive in nature (i.e., Morris water maze). The current study sought to fill an empirical void by determining if mice maintained on a high-fat diet exhibit deficits in two non-aversive memory paradigms: novel object recognition (NOR) and object location memory (OLM). Here we report that mice fed a high-fat diet over 23 weeks exhibit intact NOR, albeit a marked impairment in hippocampus-dependent OLM. We also determined the existence of corresponding aberrations in gene expression within the hippocampus of DIO mice. DIO mice exhibited significant reductions in both SIRT1 and PP1 mRNA within the hippocampus. Our data suggest that mice maintained on a high-fat diet present with impaired hippocampus-dependent spatial memory and a corresponding alteration in the expression of genes that have been implicated in memory consolidation.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Hipocampo/metabolismo , Aprendizagem em Labirinto/fisiologia , Transtornos da Memória/etiologia , Sirtuína 1/genética , Animais , Medo/fisiologia , Hipocampo/fisiopatologia , Masculino , Memória/fisiologia , Transtornos da Memória/genética , Transtornos da Memória/metabolismo , Transtornos da Memória/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/genética , Obesidade/metabolismo , Sirtuína 1/metabolismo
5.
Sci Transl Med ; 14(637): eabh3831, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35320000

RESUMO

Inflammation has profound but poorly understood effects on metabolism, especially in the context of obesity and nonalcoholic fatty liver disease (NAFLD). Here, we report that hepatic interferon regulatory factor 3 (IRF3) is a direct transcriptional regulator of glucose homeostasis through induction of Ppp2r1b, a component of serine/threonine phosphatase PP2A, and subsequent suppression of glucose production. Global ablation of IRF3 in mice on a high-fat diet protected against both steatosis and dysglycemia, whereas hepatocyte-specific loss of IRF3 affects only dysglycemia. Integration of the IRF3-dependent transcriptome and cistrome in mouse hepatocytes identifies Ppp2r1b as a direct IRF3 target responsible for mediating its metabolic actions on glucose homeostasis. IRF3-mediated induction of Ppp2r1b amplified PP2A activity, with subsequent dephosphorylation of AMPKα and AKT. Furthermore, suppression of hepatic Irf3 expression with antisense oligonucleotides reversed obesity-induced insulin resistance and restored glucose homeostasis in obese mice. Obese humans with NAFLD displayed enhanced activation of liver IRF3, with reversion after bariatric surgery. Hepatic PPP2R1B expression correlated with HgbA1C and was elevated in obese humans with impaired fasting glucose. We therefore identify the hepatic IRF3-PPP2R1B axis as a causal link between obesity-induced inflammation and dysglycemia and suggest an approach for limiting the metabolic dysfunction accompanying obesity-associated NAFLD.


Assuntos
Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Animais , Resistência à Insulina/fisiologia , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Camundongos , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/genética , Obesidade/complicações , Obesidade/metabolismo
7.
Trends Cell Biol ; 32(7): 553-556, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35466029

Assuntos
Pesquisadores , Humanos
9.
Neuroscientist ; 21(5): 475-89, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25832671

RESUMO

The establishment of synaptic plasticity and long-term memory requires lasting cellular and molecular modifications that, as a whole, must endure despite the rapid turnover of their constituent parts. Such a molecular feat must be mediated by a stable, self-perpetuating, cellular information storage mechanism. DNA methylation, being the archetypal cellular information storage mechanism, has been heavily implicated as being necessary for stable activity-dependent transcriptional alterations within the CNS. This review details the foundational discoveries from both gene-targeted and whole-genome sequencing studies that have brought DNA methylation to our attention as a chief regulator of activity- and experience-dependent transcriptional alterations within the CNS. We present a hypothetical framework to resolve disparate experimental findings regarding distinct manipulations of DNA methylation and their effect on memory, taking into account the unique impact activity-dependent alterations in DNA methylation potentially have on both memory-promoting and memory-suppressing gene expression. And last, we discuss potential avenues for future inquiry into the role of DNA methylation during remote memory formation.


Assuntos
Metilação de DNA/fisiologia , Epigênese Genética/fisiologia , Memória/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/citologia , Animais , Epigênese Genética/genética , Humanos , Dados de Sequência Molecular
10.
Behav Brain Res ; 253: 54-9, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23831303

RESUMO

2,4,5 dihydro 2,5 trimethylthiazoline (TMT) is a synthesized component of red fox anal secretions that reliably elicits defensive behaviors in rats and mice. TMT differs from other predator odors because it is a single molecule, it can be synthesized in large quantities, and the dose for exposure is highly controllable in an experimental setting. TMT has become a popular tool for studying the brain mechanisms that mediate innate fear behavior to olfactory stimuli. However, this view of TMT as a biologically relevant olfactory stimulus has been challenged by suggestions that the odor elicits fear behavior due to its irritating properties, presumably working through a nociceptive mechanism. To address this criticism our lab measured freezing behavior in rats during exposures to 2 odors (TMT and butyric acid) and H2O (no odor control) following either surgical transection of the trigeminal nerves or ablation of the olfactory bulbs. Our findings (Experiment 1) indicate that freezing behavior to TMT requires an intact olfactory system, as indicated by the loss of freezing following olfactory bulb removal. Experiment 2 revealed that rats with trigeminal nerve transection freeze normally to TMT, suggesting the olfactory system mediates this behavior to TMT. A replication of Experiment 1 that included contextual fear conditioning revealed that the decreased freezing behavior was not due to an inability of olfactory bulb ablated rats to freeze (Experiment 3). Taken together, these findings support TMT's role as an ecologically relevant predator odor useful in experiments of unconditioned fear that is mediated via olfaction and not nociception.


Assuntos
Comportamento Animal/fisiologia , Reação de Congelamento Cataléptica/efeitos dos fármacos , Neurônios Aferentes/fisiologia , Odorantes , Bulbo Olfatório/fisiologia , Tiazóis/farmacologia , Nervo Trigêmeo/fisiologia , Animais , Ácido Butírico/farmacologia , Denervação , Medo/fisiologia , Masculino , Atividade Motora/efeitos dos fármacos , Comportamento Predatório , Desempenho Psicomotor/efeitos dos fármacos , Desempenho Psicomotor/fisiologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA